首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivores can shape plant communities, especially in the Arctic. We tested the role of geese for structuring bryophyte communities at fine spatial scales in the arctic tundra by excluding them from 4 × 4 m areas. We surveyed the presence and absence of bryophyte species in quadrats (10 × 10 cm) divided into 25 cells outside and inside these exclosures, after 5 and 11 years of treatment. Species richness per cell (4 cm2) was higher in the presence of geese, especially after 11 years of treatment, while geese had little effect on richness at larger scales (i.e. quadrat and whole exclosure). The slope of the species–area relationship within quadrats was consequently shallower outside exclosures. Our results further suggest that the community outside the exclosures was more variable in space and time than that inside the exclosures. We conclude that goose foraging activity promotes the coexistence of bryophyte species at the centimetre scale.  相似文献   

2.
Relationships between microhabitat variables; understory light conditions in summer and winter, altitude, slope inclination and topographic categories (valley, ridge, and slope) and the distribution of Aucuba japonica Thunb. (Cornaceae), a common understory shrub species in Japan were examined using non-contagious 66, 20 × 20 m2 quadrats. The Morishita’s I δ suggested that A. japonica distributions were strongly heterogeneous among the quadrats. Therefore positive spatial autocorrelation of A. japonica at a within-quadrat level (≤20 m) was obvious. Moran’s I statistics showed a significant positive spatial autocorrelation in A. japonica abundance within the distance shorter than 60 m. But the partial Mantel tests suggested that the mass effect from neighboring quadrats would little explain A. japonica abundance in a quadrat. The partial Mantel tests also clearly showed that A. japonica distributions were strongly structured by topography and understory light conditions. Using Monte Carlo randomization tests, we found that A. japonica was aggregately distributed in quadrats in valley which were covered by deciduous canopies. Better understory light conditions in winter together with valley edaphic conditions may increase the abundance of A. japonica there. It is concluded that habitat niche specialization is important in structuring distribution of A. japonica in this forest community.  相似文献   

3.
With the expected increase in the spread of invasive species, examination of factors controlling distributions at multiple spatial scales and ecological modelling of their potential distributions are important analyses for informed decision-making. The scale-dependence of mechanisms influencing invasion by non-native species has been shown previously, indicating that studies of key factors affecting invasive species distributions at multiple spatial scales are critical for successful management. Freshwater systems are particularly vulnerable to invasive species, yet few studies have examined the environmental factors influencing distributions of invasive species at multiple spatial scales. We examined the effect of environmental variables on the predicted distribution of the invasive aquatic grass Glyceria maxima over continental, regional and local scales in Australia. We undertook an initial critical evaluation of which predictor variables were most appropriate to use at each scale, largely considering prior knowledge. On a continental scale, climatic, topographic and hydrological variables predicted well the potential distribution of G. maxima, identifying temperate regions as most susceptible to invasion. The regional analysis found that dense, woody, riparian vegetation has a strong negative impact on the occurrence of G. maxima, especially at intermediate elevations. The invasive grass was found less often on biotite granite and on fluvial geology. At a local scale, occurrence of G. maxima was related positively to soil phosphorus and nitrogen, and negatively related to soil organic carbon. The identification of key factors affecting invasive species distributions at multiple spatial scales will inform prevention schemes, assist targeted field sampling for the development of monitoring programs, and allow prioritization of control methods.  相似文献   

4.
Productivity–species diversity relationships have been a controversial research topic in ecology with scale believed to be among the main reasons for discovering different relationships. We collected data on species diversity (richness) and productivity (peak above-ground biomass) of the Stipa breviflora association in the Inner Mongolia grassland to examine spatial scale dependency and possible underlying mechanisms responsible for the relationships found. One local and seven different landscape scales (the first level corresponds in extent to a 100 × 100 km area, which is increased consecutively by 100 km resulting in the 700 × 700 km area at the highest level) were considered. We found that: (1) unimodal relationships dominated the local scale, but this varied depending on the position along successional gradients; (2) a positive linear relationship was common at larger spatial scales; (3) biotic processes were the most likely primary factor underlying local scale unimodal relationships, but environmental heterogeneity (precipitation patterns) was the main determinant of relationships found at larger spatial scales; (4) our study contributed to other empirical evidence and predictions of theoretical models regarding scale dependency of productivity–species richness relationships; (5) while earlier research demonstrated positive linear species richness–productivity relationships across a number of ecological scales in the Inner Mongolia steppe, our study specifically tested a spectrum of geographical scales to confirm the scale-dependency of this relationship. Lastly, our study emphasized the critical role played by precipitation patterns in controlling biodiversity and grassland ecosystem functioning, which maintains the relatively high level of biodiversity and stable ecosystem processes.  相似文献   

5.
The tree species composition, vertical stratification and patterns of spatial autocorrelation at the tree and quadrate (25 × 25 m) scales were studied in a natural mature PinuS sylvestris dominated forest in eastern Finland. For the analyses we mapped the locations and dimensions of trees taller than 10 m in a 9 ha (300 × 300 m) area, and within this area we mapped all trees taller than 0.3 m on a core plot of 4 ha (200 × 200 m). The overall tree size distribution was bimodal. the dominant layer and the understory forming the peak frequencies. Pinus sylvestris dominated the main canopy, together with scattered Betula pendula and Picea abies. Alnus incana, Populus tremula, Salix caprea, Sorbus aucuparia and Juniperus communis occurred only in the under- and middlestories. Autocorrelation analysis (semivarianee) of tree size variation revealed spatial patterns, which were strongly dependent on the size of trees included in the analysis. When all living trees, including the understory regeneration, were taken into account, the autocorrelation pattern ranged up to 35 m inter-tree distances, reflecting the spatial scale of understory regeneration patches. Competitive interaction among middle- and upperstory trees (height>10 m) had contrasting effects on autocorrelation pattern depending on spatial scale. At the fine scale, dominant trees suppressed their smaller close neighbors (asymmetric competition), which was shown as increased tree size variation at small inter-tree distances (<2 m). At slightly larger inter-tree distances, specifically among large trees of similar size, competition was more symmetrical, which resulted in decreased tree size variation at these inter-tree distances (3–4 m). This effect was seen most clearly in the dominant trees, there being a clear autocorrelation pattern in tree size up to inter-tree distances of ~4 m. At the quadrate scale (25 × 25 m) the analysis revealed high local variation in structural characteristics such as tree height diversity (THD), tree species diversity (H) and autocorrelation of tree height. The analysis suggests that naturally developed P. sylvestris forests exhibit complex small-scale patterns of structural heterogeneity and spatial autocorrelation in tree size. These patterns may be important for stand-scale habitat diversity and can have aggregated effects on ecosystem dynamics at larger spatial scales though their influence on the spread of disturbance and regeneration after disturbance.  相似文献   

6.
Geographic range, turnover rate and the scaling of species diversity   总被引:6,自引:0,他引:6  
The study of the relative roles of local and regional processes in determining the scaling of species diversity is a very active field in current ecology. The importance of species turnover and the species‐range‐size frequency distributions in determining how local and regional species diversity are linked has been recognised by recent approaches. Here we present a model, based on a system of fully nested sampling quadrats, to analyse species diversity at several scales. Using a recursive procedure that incorporates increasingly smaller scales and a multiplicative formula for relating local and regional diversity, the model allows the simultaneous depiction of alpha, beta and gamma diversity in a single “species‐scale plot”. Species diversity is defined as the number of ranges that are intersected by sampling quadrats of various sizes. The size, shape and location of individual species ranges determine diversity at any scale, but the average point diversity, measured at hypothetical zero‐area localities, is determined solely by the size of individual ranges, regardless of their shape and location. The model predicts that if the species‐area relationship is a power function, then beta diversity must be scale invariant if measured at constant scale increments. Applying the model to the mammal fauna of four Mexican regions with contrasting environmental conditions, we found that: 1) the species‐range‐size frequency distribution at the scale of the Mexican regions differs from the log‐normal pattern reported for the national and continental scales. 2) Beta diversity is not scale‐invariant within each region, implying that the species‐area relationship (SAR) does not follow a power function. 3) There is geographic variation in beta diversity. 4) The scaling of diversity is directly linked to patterns of species turnover rate, and ultimately determined by patterns in the geographic distribution of species. The model shows that regional species diversity and the average distribution range of species are the two basic data necessary to predict patterns in the scaling of species diversity.  相似文献   

7.
The aim of this study was to disentangle the effects of landscape configuration (i.e., fragment area, connectivity, and proximity to a busy highway) on the assembly of annual plant communities at different spatial scales. Our main hypothesis was that larger and more connected fragments would have higher species densities per plot and this may result in differences in turnover and nestedness patterns at the fine spatial scales where plants interact. Specifically, since Mediterranean annuals are known to form strong competitive hierarchies, we expected to find a nested pattern of beta diversity due to sequential species loss. The study area was a fragmented gypsum habitat in central Spain with a semiarid climate where two fragmentation drivers coexist: agricultural practices and a roadway. Larger fragments had higher species densities per plot (20 × 20 m). Nevertheless, we detected no effect on the species assembly at fine spatial scales (30 × 30 cm). However, when the fragment connectivity was high the species that appeared in poor quadrats (30 × 30 cm) comprised a subset of the species in rich quadrats. These results agree well with the establishment of strong competitive hierarchies among annual species. The distance to the highway influenced the identity of the species established in the community (i.e., species composition) at fine spatial scales, but we detected no effect on species turnover, nestedness, or species densities. The main conclusion of our study is that the effects of habitat fragmentation extend beyond the landscape scale and they determine the spatial assembly at fine spatial scales.  相似文献   

8.
Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.  相似文献   

9.
This study examines vascular plant species richness along an altitudinal gradient in alpine Australia. Vascular plant composition and soil temperature records were obtained for five summits (from 1729 m to 2114 m a.s.l.) using sampling protocols from the Global Observation Research Initiative in Alpine Environments program. Species richness was examined against altitude, aspect and climatic variables at different spatial scales (10 × 10 cm quadrats, 1 m2 quadrats, clusters of 4 * 1 m2 quadrats, for the summit area above a line 5 m altitudinally below the summit (the −5 m isoline), for the extended summit down to the −10 m isoline). About 75 taxa (70 species, 5 graminoid genera) were recorded, 9 of which are endemic to the small alpine area of ∼100 km2. There were significant linear relationships between species richness and altitude and climatic variables for the top to −5 isolines on the summits. However, there was no consistent pattern for species richness at other spatial scales, altitude, aspect or climatic variables. The proportion of species for the whole summits with localised distributions (local endemics) increased with altitude. Predicted increasing temperatures and reduced snowcover is likely to result in an increase in species richness as shrubs, herbs and introduced weeds become more common at higher altitude. Because Australian alpine areas occur in narrow altitudinal bands with no nival zone, there are no higher altitudinal refuges available for alpine species. Therefore many of these species are likely to be at risk of extinction from climate change.  相似文献   

10.
Previous research focusing on broad‐scale or geographically invariant species‐environment dependencies suggest that temperature‐related variables explain more of the variation in reptile distributions than precipitation. However, species–environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad‐scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile–climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national‐scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r2 = 0.05, < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r2 = 0.65, < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local‐scale analyses.  相似文献   

11.
Questions: Are positive understorey‐dominant associations important in physically severe dune communities and does the strength of positive associations vary with disturbance at the local scale and with stress at the regional scale? Do associational patterns observed at the neighbourhood scale predict diversity at higher scales? Location: Coastal sand dunes, Aquitaine (France). Methods: Associational patterns with five dominant species were recorded along a local gradient of disturbance and a 240‐km long regional gradient. Density, richness, cover and variance ratio of understorey species were recorded in quadrats located in dominant and in open areas. Spatial pattern of dominant plant species was recorded using a distance‐based method. Results: Positive understorey‐dominant associations were most frequent at both regional and local scale, although negative associations with understorey species were observed for one of the five dominants. At the regional scale, there was a shift in the magnitude of spatial associations, with higher positive associations in the most stressful sites, whereas spatial associations where not affected by the local disturbance gradient. Positive associations were not related to the size of the dominants but rather influenced by the identity of the dominant species. Conclusions: Our study highlights the potential crucial role of facilitation together with the importance of turnover of the dominants in explaining large‐scale variation in diversity. However, because positive associations may also be attributed to environmental heterogeneity or co‐occurrence of microhabitat preferences of species, experiments are needed to fully assess the relative importance of facilitation versus other drivers of community diversity.  相似文献   

12.
This paper compares the rate of invasion of Heracleum mantegazzianum (Apiaceae), a Caucasian species invading Europe, at three spatial scales (continental, regional, and local). The rate of invasion was evaluated using inclusion curves, by plotting the cumulative number of invaded countries against time on the continental scale of Europe, number of occupied grid cells at the regional scale of the Czech Republic, and invaded area inferred from a series of aerial photographs taken at the local scale over a period of 49 years in the Slavkovký les region, Czech Republic. Time of 50% inclusion (with 95% confidence intervals, CI) of invaded countries, occupied grid cells, and invaded area was assessed. The invasion was slowest at the continental scale (62 years, CI = 53–70) and did not differ significantly between regional (16 years, CI = 10–20) and local (22 years, CI = 19–24) scales. Our results indicate that there are two different mechanisms of spread acting together in this system, namely human influences and natural spread, and the relative influence of these mechanisms appears to change in an inverse proportion from the largest to the smallest scale. At the local scale, under suitable habitat conditions, the process is driven by biological traits of the species related to dispersal. At the continental and regional scales, humans played a crucial role in the invasion of H. mantegazzianum by planting it as a garden ornamental. At these scales, human-mediated dispersal seems to have been the major driver of spread, responsible for creating dispersal foci in the initial phases of invasion. Species traits played an important role in local spread, resulting in the colonization of new sites.  相似文献   

13.
In this study, the first investigation of population structure in an aquatic angiosperm, I show that populations of a marine angiosperm (eelgrass, Zostera marina) are genetically differentiated at a number of spatial scales. I find also that there is no correspondence between geographic and genetic distances separating subpopulations, an increasingly common result in spatially stratified studies of genetic structure in marine invertebrates. F-statistics, calculated for two years from electrophoretic variation at five polymorphic allozyme loci, indicate significant genetic differentiation among sampling quadrats within each of two bays (θ = 0.064-0.208), between tide zones within a bay (θ = 0.025-0.157) and between bays (θ = 0.079). Spatial autocorrelation analysis was used to explore genetic differentiation at smaller spatial scales; estimated patch sizes (within which genetic individuals are randomly associated) indicated no appeciable genetic structure at scales less than 20 m × 20 m. Calculated values of F-statistics were a function of the spatial scale from which samples were drawn: increasing the size of the “subpopulation” included in calculation of fixation indices for the same “total” sample resulted in an increase in the magnitude of f (e.g., from 0.092 to 0.181) and a decrease in θ (e.g., from 0.186 to 0.025). On the basis of the best estimate of the spatial scale of subpopulations, the effective number of migrants per generation (Nem) ranges from 1.1 to 2.8. Genetic consequences of the disturbance regime in the eelgrass habitat sampled were extreme variation between years in the allele richness and proportion of heterozygotes in a sample and a positive relationship between the extinction probability of patches and the genetic variance among them. The changes in F-statistics as a function of sampling scale and the observation that θ among sampled quadrats was positively associated with the probability of extinction among quadrats indicated that indirect estimates of gene flow (Nem) calculated from θ should be cautiously interpreted in populations that may not yet be in drift-migration equilibrium.  相似文献   

14.
Recent biogeographical studies have shown positive correlations between plant/vertebrate species richness and human population presence. The same pattern has been reported for Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) (EPT) amongst European countries. This is surprising as EPT are bio-indicators of stream pollution and most local studies report higher species richness of these macro-invertebrates where human influences on water quality are lower. Using a newly collated taxonomic dataset, we studied whether the species richness of EPT is related to human population size at finer resolutions (Italy's regions, provinces and 10×10 km2 UTM cells) controlling for sampling effort, variations in area and for spatial autocorrelation. At all study grains, observed EPT species richness was strongly correlated to the number of records available for the same taxon. At the regional level, the observed number of Ephemeroptera and Plecoptera species significantly increased with increasing human population size. At the provincial level, observed species richness decreased significantly with increasing human population size for Ephemeroptera and did not vary significantly for Plecoptera and Trichoptera. At the finest grain scale, there were significant negative correlations of observed Ephemeroptera and Trichoptera species richness with human population size, although the proportion of variance explained was very low. These results were broadly confirmed when analyzing the estimated number of species using the formula of Chao2. Our analysis confirms the scale-dependence of the human population–biodiversity correlation. Over broad scales more populated regions tend to have more species than less populated ones. Restricting the study grain, the positive EPT species–people relationship disappears and turns into a negative one. Our findings suggest a challenge also for the conservation of regional EPT diversity.  相似文献   

15.
Indicator species groups are often used as surrogates for overall biodiversity in conservation planning because inventories of multiple taxa are rare, especially in the tropics where most biodiversity is found. At coarse spatial scales most studies show congruence in the distribution of species richness and of endemic and threatened species of different species groups. At finer spatial scale levels however, cross-taxon congruence patterns are much more ambiguous. In this study we investigated cross-taxon patterns in the distribution of species richness of trees, birds and bats across four tropical forest types in a ca. 100 × 35 km area in the Northern Sierra Madre region of Luzon Island, Philippines. A non-parametric species richness estimator (Chao1) was used to compensate for differential sample sizes, sample strategies and completeness of species richness assessments. We found positive but weak congruence in the distribution of all and endemic tree and bird and tree and bat species richness across the four forest types; strong positive congruence in the distribution of all and endemic bat and bird species richness and low or negative congruence in the distribution of globally threatened species between trees, birds and bats. We also found weak cross-taxon congruence in the complementarity of pairs of forest types in species richness between trees and birds and birds and bats but strong congruence in complementarity of forest pairs between trees and bats. This study provides further evidence that congruence in the distribution of different species groups is often ambiguous at fine to moderate spatial scales. Low or ambiguous cross-taxon congruence complicates the use of indicator species and species groups as a surrogate for biodiversity in general for local systematic conservation planning.  相似文献   

16.
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal‐scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans, in South‐ and Mid‐Finland. We used presence–absence data (n = 10,032 plots of 9 ha) and novel approach to separate the effects on site‐, landscape‐, and regional‐level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape‐level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large‐scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.  相似文献   

17.
We investigated the distribution patterns of yeast communities in freshwater lakes along a latitudinal gradient in order to evaluate yeast biogeography at intercontinental (501–8000 km), regional (0–500 km) and local (0–1 km) geographical scales. We identified 285 yeast isolates belonging to 64 species based on sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit of rRNA genes. Distance decay analysis showed a significant negative slope curve at the intercontinental scale. At the intercontinental and regional scales, the dissimilarity of the yeast communities was correlated with geographical distance, with community similarity decreasing with increasing distance. The physiological profiles of the yeast communities from tropical and Patagonian lakes were similar but were different from those of Antarctic lakes. This is the first report of latitudinal patterns of lake yeast diversity along a gradient extending from Antarctic to tropical environments.  相似文献   

18.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

19.
Red Junglefowl (Gallus gallus) are among the few remaining ancestors of an extant domesticated livestock species, the domestic chicken, that still occur in the wild. Little is known about genetic diversity, population structure, and demography of wild Red Junglefowl in their natural habitats. Extinction threats from habitat loss or genetic alteration from domestic introgression exacerbate further the conservation status of this progenitor species. In a previous study, we reported extraordinary adaptive genetic variation in the MHC B‐locus in wild Red Junglefowl and no evidence of allelic introgression between wild and domestic chickens was observed. In this study, we characterized spatial genetic variation and population structure in naturally occurring populations of Red Junglefowl in their core distribution range in South Central Vietnam. A sample of 212 Red Junglefowl was obtained from geographically and ecologically diverse habitats across an area of 250 × 350 km. We used amplified fragment‐length polymorphism markers obtained from 431 loci to determine whether genetic diversity and population structure varies. We found that Red Junglefowl are widely distributed but form small and isolated populations. Strong spatial genetic patterns occur at both local and regional scales. At local scale, population stratification can be identified to approximately 5 km. At regional scale, we identified distinct populations of Red Junglefowl in the southern lowlands, northern highlands, and eastern coastal portions of the study area. Both local and long‐distance genetic patterns observed in wild Red Junglefowl may reflect the species’ ground‐dwelling and territorial characteristics, including dispersal barriers imposed by the Annamite Mountain Range. Spatially explicit analyses with neutral genetic markers can be highly informative and here elevates the conservation profile of the wild ancestors of domesticated chickens.  相似文献   

20.
Spatial and temporal variation in patterns of distribution and abundance of algal assemblages is large and often occurs at extremely small spatial and temporal scales. Despite this, few studies investigate interactions between these scales, that is, how patterns of spatial variation change through time. This study investigated a number of scales of spatial variation (from tens of centimetres to kilometres) in assemblages of intertidal and subtidal turfing algae. Significant differences were found in the composition and abundances of species in assemblages of turf at all spatial scales tested. Much of the variation among assemblages could, however, be explained at the scale of quadrats (tens of centimetres apart) (27±1.4 (SE)% of dissimilarity) with an additional 7±1.2% explained at the scale of sites (tens of metres apart) and 10±1.5% at the scale of locations (kilometres apart). Although the greatest dissimilarity in assemblages occurred at the scale of habitats, this accounted for a relatively small proportion of the overall variation in assemblages. These patterns were consistent through time, that is, at each sampling time the spatial scale explaining the greatest proportion of variation in assemblages was replicate quadrats separated by tens of centimetres. These patterns appear to be due to small-scale variation in patterns of distribution and abundances of the individual species that comprise turfing algal assemblages. The results of this experiment suggest that large scale processes have less effect on patterns of variability of algal assemblages than those occurring on relatively smaller spatial scales and that small-scale spatial variation should not be considered as simply “noise”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号