首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The red and pink aerobic muscle fibers are used to power steady swimming in fishes. We examined red and pink muscle recruitment and function during swimming in scup, Stenotomus chrysops, through electromyography and high-speed ciné. Computer analysis of electromyograms (EMGs) allowed determination of initial speed of muscle recruitment and duty cycle and phase of muscle electromyographic activity for both fiber types. This analysis was carried out for three longitudinal positions over a range of swimming speeds. Fiber type and longitudinal position both affected swimming speed of initial recruitment. Posterior muscle is recruited at the lowest swimming speed, whereas more anterior muscle is not initially recruited until higher speeds. At more anterior positions, the initial recruitment of pink muscle occurs at a higher swimming speed than the recruitment of red muscle. The duty cycle of pink muscle EMG activity is significantly shorter than that of red muscle, reflecting a difference in the onset time of activation during each cycle of length change: pink muscle onset time follows that of red. The different patterns of usage of red and pink muscle reflect differences in their contraction kinetics. Because pink muscle generates force more rapidly than red muscle, it can be activated later in each tailbeat cycle. Pink muscle is used to augment red muscle power production at higher swimming speeds, allowing a higher aerobically based steady swimming speed than that possible by red muscle alone.  相似文献   

2.
We studied postexercise physiology and behaviour of smallmouth bass (Micropterus dolomieu) that voluntarily ascended experimental raceways of varying length (20-50 m) against water velocities ranging from 8 to 120 cm/s. Our first objective was to link mean swimming speed to metabolism using patterns in postexercise muscle glycogen, muscle lactate, and plasma lactate. Our second objective was to examine several behavioural indices (attempt rate, success rate, and recovery time between an ascent and a subsequent attempt) and determine whether patterns in these data reflected those from the physiological measurements. Postexercise muscle glycogen and plasma lactate data suggest that smallmouth bass powered swimming speeds up to 70-80 cm/s using energy from aerobic processes. However, lactate did not begin to accumulate in the white muscle until speeds in excess of 120-130 cm/s were reached. The behavioural parameters measured did not indicate the presence of a physiological threshold at 70-80 cm/s; however, patterns in all factors changed appreciably when fish maintained speeds in excess of 120-130 cm/s. Therefore, it is clear that behaviour and physiology are tightly linked in this species and that maximum aerobic swimming capacity may not limit performance (or re-performance) during short-duration swims.  相似文献   

3.
An empirical equation relating O2 consumption (power input) to pressure production during jet-propelled swimming in the squid (Illex illecebrosus) is compared with hydrodynamic estimates of the pressure-flow power output also calculated from pressure data. Resulting estimates of efficiency and stress indicate that the circularly arranged obliquely striated muscles in squid mantle produce maximum tensions about half those of vertebrate cross-striated muscle, that "anaerobic" fibers contribute to aerobic swimming, and that peak pressure production requires an instantaneous power output higher than is thought possible for muscle. Radial muscles probably contribute additional energy via elastic storage in circular collagen fibers. Although higher rates of aerobic power consumption are only found in terrestrial animals at much higher temperatures, the constraint on squid performance is circulation, not ventilation. Anaerobic power consumption is also among the highest ever measured, but the division of labor between "aerobic" and "anaerobic" fibers suggests a system designed to optimize the limited capacity of the circulation.  相似文献   

4.
Oxygen uptake, heart rate and contraction frequencies of slow oxidative (SO) and fast glycolytic (FG) muscle were measured simultaneously in gilthead seabream Sparus aurata submitted to stepwise increases in current speed in a swimming respirometer. Variation in oxygen uptake was closely related to variation in heart rate, over initial steps these rose in concert with an increase in contraction frequency of SO muscle. There was an asymptote in oxygen uptake and heart rate at high speeds that reflected a transition from exclusive use of aerobic SO muscle to a combination of SO and anaerobic FG muscle, and which preceded fatigue.  相似文献   

5.
Surgical methods developed to implant EMG (electromyogram) transmitters in Atlantic salmon Salmo salar were tested to calibrate electromyograms from axial red musculature to swimming speed in a swim speed chamber, and to compare electromyograms of fish from two stocks (Lone and Imsa). Ten Lone and eight Imsa salmon were equipped with internal EMG transmitters. Surgical procedures were acceptable, with 100% survival of all implanted fish during the study. It was possible to calibrate EMG pulse intervals to swimming speed in 14 of the 18 salmon run in the swim speed chamber ( r2= 0·35-0·76 for individuals, 0·63 for pooled data). Individuals differed in their EMG resting levels (EMGs recorded at 0·5 ms−1), and so higher correlations were obtained between swimming speed and an activity index (EMG pulse intervals at different speeds/EMG resting levels) (pooled data, r2 =0·75). The linear relationship between swimming speed and EMG pulse intervals differed significantly between the two stocks ( P <0·05). This successful calibration of EMGs to swimming speed opens the possibility of calibrating EMGs to oxygen consumption and the measurement of the metabolic costs of activity in field experiments.  相似文献   

6.
A biotelemetry system recording fish activity   总被引:2,自引:0,他引:2  
A biotelemetry system is described for obtaining, transmitting and recording the electromyograms (EMGs) produced in muscle activity of free-swimming fish as quantitative indicators of overall fish activity. The radiotransmitters used come in the form of cylindrical packages having two sensing electrodes, all fully implantable in the fish body cavity. EMGs are transmitted as radio pulses with the intensity of muscular activity determining the intervals between pulses. The packages also contain temperature sensors and fish temperatures are transmitted with every 32nd pulse. Transmitted EMG pulses are detected, 'measured' and stored by a single portable receiver (Model SRX_400, Lotek). Data can be subsequently transferred to a computer (which can also be portable) for storage, processing and statistical analysis. Transmitter battery life can be in excess of 7 months, permitting laboratory or field studies of long duration. Transmitter package implantation surgery requires a mid-ventral incision and internal securing of transmitter and sensing electrodes. Surgical silk, cyanoacrylate tissue adhesives, and polydioxanone (PD), a synthetic absorbable suture, were all tried as means of incision closure. The most effective was PD alone. Trials of the system consisted of forced swims by transmitter-equipped rainbow trout Oncorhynchus mykiss Walbaum. The data obtained provided an inverse linear relation between forced swim speed and EMG pulse interval. Trials were conducted at intervals over periods up to 2 months. Fish showed neither distress, nor difficulty in swimming up to maximum speeds of 60 cm s −1 (fish lengths 41.0, 44.4 cm).  相似文献   

7.
Electromyograms (EMGs) are measured by bipolar surface electrodes that quantify potential differences. Bipolar potentials over penniform muscles may be associated with errors. Our assumption was that muscle activity can be quantified more reliably and with a higher spatial resolution using current measurements.The purpose of this work is: (a) to introduce the concept of current measurements to detect muscle activity, (b) to show the coherences observed over a segment of a typical penniform muscle, the gastrocnemius medialis where one would expect a synchronicity of the activation, and (c) to show the amount of mixing that is caused by the finite inter electrode resistance.A current amplifier was developed. EMGs were recorded at 40% of maximum voluntary contraction during isometric contractions of the gastrocnemius medialis. EMGs of twelve persons were recorded with an array of four peripheral and one central electrode. Monopolar EMGs were recorded for “all-potential”, “center at current” and “all-current” conditions. Coherence revealed the similarity of signals recorded from neighboring electrodes.Coherence was high for the “all-potential”, significant for the “current at center” condition and disappeared in the “all-current” condition.It was concluded that EMG array recordings strongly depends on the measurement configuration. The proposed current amplifier significantly improves spatial resolution of EMG array recordings because the inter-electrode cross talk is reduced.  相似文献   

8.
不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应   总被引:1,自引:1,他引:0  
在(25±1)℃的条件下,测定瓦氏黄颡(Pelteobagrus vachelli Richardson)幼鱼体重(4.34±0.13)g的临界游泳速度(Ucrit),然后分别以临界游泳速度的不同百分比(20、40、60、80、100%Ucrit)将实验鱼分为5个速度处理组,另外设置静止对照组和高速力竭对照组。处理组实验鱼在不同游泳速度下分别游泳20min,在此过程中测定并计算运动代谢率(Activity metabolic rate,AMR),随后测定肌肉、血液和肝脏中的乳酸、糖原和葡萄糖含量。结果显示:实验鱼的绝对临界游泳速度为(48.28±1.02)cm/s,相对临界游泳速度为(6.78±0.16)BL/s;随着游泳速度的提高AMR显著增加(Pcrit时肌乳酸和血乳酸含量显著高于80%Ucrit的水平(P0.05);100%Ucrit时肝糖原含量显著低于40%Ucrit的水平(P0.05)。经计算瓦氏黄颡幼鱼到达临界游泳速度时的无氧代谢功率比例仅为11.0%,表明其游泳运动主要以有氧代谢供能;实验鱼的无氧代谢大约在80%Ucrit才开始启动,与其他鱼类比较启动时间较晚,说明其游泳运动对无氧代谢的依赖程度较低。研究提示瓦氏黄颡幼鱼是一种有氧运动能力较强的鱼类,这一能量代谢特征可能与提高其生存适合度有关。    相似文献   

9.
The relationship between diaphragm electromyogram (EMG), isometric force, and length was studied in the canine diaphragm strip with intact blood supply and innervation under three conditions: supramaximal tetanic (100 Hz) phrenic nerve stimulation (STPS; n = 12), supramaximal phrenic stimulation at 25 Hz (n = 15), and submaximal phrenic stimulation at 25 Hz (n = 5). In the same preparation, the EMG-length relationship was also examined with direct muscle stimulation when the neuromuscular junction was blocked. EMG from three different sites and via two types of electrodes (direct or sewn-in and surface) were recorded during isometric contraction at different lengths. Direct EMGs were recorded from two bipolar electrodes sutured into the strip, one near its central end and the other near its costal end. A third EMG electrode configuration summed potentials from the whole strip by recording potentials between central and costal sites. Surface EMGs were recorded by a bipolar spring clip electrode that made contact with upper and lower surfaces of the muscle strip with light pressure. In all conditions of stimulation with different types of electrodes, all EMGs decreased significantly (P less than 0.05) when muscle length was changed from 50 to 120% of resting length (L0). Minimal and maximal force outputs were observed at 50 and 120% of L0, respectively, in all experiments. The results of this study indicated that the muscle length is a significant variable that affects the EMG recording and that the diaphragmatic EMG may not be an accurate reflection of phrenic nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To test the hypothesis that white muscle fibre portions of the myotomes are used at sustainable swimming speeds, skipjack tuna, Katsuwonus pelamis , were forced to swim against various current velocities in a water tunnel while electrical activity of the red and white muscle fibres was simultaneously recorded. Eight fish were tested, five fish graded white muscle fibres into activity at swimming speeds above their minimum hydrostatic equilibrium speed, but well below the estimated maximum sustainable swimming speed of skipjack tuna. Three other fish showed white muscle fibre activity at minimum swimming speeds, a possibly abnormal condition.  相似文献   

11.
The present study attempts to correlate the metabolism and locomotory behavior of 25 species of midwater Cephalopoda from California and Hawaii with the maximal activities of key metabolic enzymes in various locomotory muscle tissues. Citrate synthase (CS) and octopine dehydrogenase (ODH) activities were used as indicators of aerobic and anaerobic metabolic potential respectively. CS activity in mantle muscle is highly correlated with whole-animal rates of oxygen consumption, whereas ODH activity in mantle muscle is significantly correlated with a species' ability to buffer the acidic end-products of anaerobic metabolism. Both CS and ODH activities in mantle muscle declined strongly with a species' habitat depth. For example, CS and ODH activities ranged respectively from 0.04 units g(-1) and 0.03 units g(-1) in the deep-living squid Joubiniteuthis portieri, to 8.13 units g(-1) and 420 units g(-1) in the epipelagic squid Sthenoteuthis oualaniensis. The relationships between enzymatic activities and depth are consistent with similar patterns observed for whole-animal oxygen consumption. This pattern is believed to result from a relaxation, among deep-living species, in the need for strong locomotory abilities for visual predator/prey interactions; the relaxation is due to light-limitation in the deep sea. Intraspecific scaling patterns for ODH activities may, for species that migrate ontogenetically to great depths, reflect the counteracting effects of body size and light on predator-prey detection distances. When scaled allometrically, enzymatic activities for the giant squid, Architeuthis sp., suggest a fairly active aerobic metabolism but little burst swimming capacity. Interspecific differences in the relative distributions of enzymatic activities in fin, mantle, and arm tissue suggest an increased reliance on fin and arm muscle for locomotion among deep-living species. We suggest that, where high-speed locomotion is not required, more efficient means of locomotion, such as fin swimming or medusoid arm propulsion, are more prevalent.  相似文献   

12.
1. The viability of Histiobranchus lateral muscle was prolonged up to 7 times by recompression of the tissue. 2. The maximum twitch contraction force of both Anguilla and Histiobranchus was recorded at a pressure between 150 and 350 atm. At 1 atm Anguilla developed 60% maximum force and Histiobranchus 10-20% maximum force. 3. Twitch contraction time doubled for a pressure increase of 400 atm. This effect is predicted to halve the maximum swimming speed at 4000 m and is discussed in relation to muscle force and anaerobic support.  相似文献   

13.
Red and white axial muscle activity of adult Atlantic salmon Salmo salar was examined using conventional electromyography (EMG x ) and activity radio-transmitters (EMG i ) at 0·5 and 0.7 body lengths (L) along the body of the fish. Critical swimming trials were conducted and maximum sustainable speeds (Ucrit) were unaffected by the presence of electrodes, being 1·51 ± 21 m s−1 (3.33 ± 0.34 L s−1) ( n =44). Regardless of longitudinal position of the electrodes within the musculature, both EMG x s and EMG i s indicated increasing red muscle activity with increasing swimming speed, whereas white muscle fibres were recruited only at speeds > 86±5% Ucrit. Telemetered EMG i signals indicated that muscle activity varied significantly for electrodes implanted at different longitudinal positions along the fish ( P < 0·001). These results suggest that electrode placement is an important influence affecting the signals obtained from radio transmitters that estimate activity and location should be standardized within biotelemetry studies to allow accurate and consistent comparisons of activity between individuals and species. Optimal location for electrode placement was determined to be in the red muscle, towards the tail of the fish (0·7 L ).  相似文献   

14.
五种淡水鱼类幼鱼游泳能力的比较   总被引:1,自引:0,他引:1  
付翔  付成  付世建 《生态学杂志》2020,(5):1629-1635
为了探讨栖息于不同生境中鱼类的游泳能力和偏好游泳速度及其生理机制,本研究以中华倒刺鲃(Spinibarbus sinensis)、异育银鲫(Carassius auratus gibelio)、岩原鲤(Procypris rabaudi)、青鱼(Mylopharyngodon piceus)和胭脂鱼(Myxocryprinus asiaticus)5种鱼的幼鱼为对象,在(25±1)℃条件下测定了5种鱼类的标准代谢率(SMR)、最大代谢率(MMR)、有氧代谢范围(MS)、临界游泳速度(Ucrit)、最大匀加速游泳速度(Ucat)和偏好游泳速度(Upref)。结果发现:5种实验鱼中,中华倒刺鲃的游泳能力最强,游泳能力较差的为青鱼和胭脂鱼;5种鱼之间的代谢和游泳能力差异显著,其偏好游泳速度主要集中在(10~24.5cm·s^-1)区域。研究表明,鱼类游泳能力的种间差异可能主要由心鳃系统相关的呼吸能力和体型相关的游泳效率所决定。本研究提供的有关鱼类游泳能力、偏好游泳速度等资料对于鱼道设计等有一定的参考价值。  相似文献   

15.
Six locomotory muscles of wild common coots, Fulica atra, were analyzed histochemically. Capillarity and fiber-type distributions were correlated to the functional implications and physiological needs of each muscle. Leg muscles exhibit three unevenly distributed fiber types, a pattern that reflects the great variety of terrestrial and aquatic locomotory performances that coots are able to develop. Aerobic zones are presumably recruited during steady swimming and diving, while regions with anaerobic characteristics may be used for bursts of activity such as sprint swimming or during take off, when coots run along the water's surface. Fiber types and capillarization in wing muscles have a marked oxidative trend. High wing beat frequencies, short and broad wings, and the long distance migrations that these birds perform indicate that the presence of high numbers of oxidative fibers and the well developed capillary supply are needed for enhanced oxygen uptake. The pectoralis muscle, except in its deep part, has exclusively fast oxidative fibers with a very high staining intensity for succinate dehydrogenase assay as compared to the same fiber type of other muscles. Its predominant role in flapping flight justifies these characteristics that are typical of fibers with high aerobic metabolism. The deep part of the pectoralis muscle presents a low proportion of an unusual slow anaerobic fiber type. These fibers could play a role during feeding dives when the bird presses the air out of the feathers by tightening the wings against the body. A linear relationship between capillary and fiber densities in all coot muscles studied reflects an adjustment between fiber diameter and vascularization in order to obtain the oxygen for mitochondrial supply. This strategy seems a suitable way to cope with the rigid aerobic constraints that flying and diving impose upon the coot's physiology. J. Morphol. 237:147–164, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Surface electromyograms (EMGs) recorded with a couple of electrodes are meant to comprise representative information of the whole muscle activation. Nonetheless, regional variations in neuromuscular activity seem to occur in numerous conditions, from standing to passive muscle stretching. In this study, we show how local activation of skeletal muscles can be automatically tracked from EMGs acquired with a bi-dimensional grid of surface electrodes (a grid of 8 rows and 15 columns was used). Grayscale images were created from simulated and experimental EMGs, filtered and segmented into clusters of activity with the watershed algorithm. The number of electrodes on each cluster and the mean level of neuromuscular activity were used to assess the accuracy of the segmentation of simulated signals. Regardless of the noise level, thickness of fat tissue and acquisition configuration (monopolar or single differential), the segmentation accuracy was above 60%. Accuracy values peaked close to 95% when pixels with intensity below ~70% of maximal EMG amplitude in each segmented cluster were excluded. When simulating opposite variations in the activity of two adjacent muscles, watershed segmentation produced clusters of activity consistently centered on each simulated portion of active muscle and with mean amplitude close to the simulated value. Finally, the segmentation algorithm was used to track spatial variations in the activity, within and between medial and lateral gastrocnemius muscles, during isometric plantar flexion contraction and in quiet standing position. In both cases, the regionalization of neuromuscular activity occurred and was consistently identified with the segmentation method.  相似文献   

17.
The rectum possesses electric activity in the form of pacesetter (PPs) and action potentials (APs). In recent studies we suggested that the waves are not initiated by the extrarectal autonomic innervation but might be triggered by a 'rectosigmoid pacemaker' and are transmitted in the rectal wall through the rectal musculature and not the enteric nerve plexus. To investigate whether the rectal waves are transmitted through the circular or longitudinal muscle layer, the rectum of 18 mongrel dogs was exposed under anesthesia through an abdominal incision. Three electrodes were applied to the rectal wall (longitudinal muscle layer) and another 3 electrodes to the circular muscle; the latter was exposed by splitting apart the fibers of the longitudinal muscle. Rectal electric activity and pressure were recorded from the 6 electrodes before and after performing individual myotomy of the rectal longitudinal (9 dogs), circular (9 dogs), and then the whole muscle layers (18 dogs). The myotomy was performed proximal to and between the electrodes. Pacesetter (PPs) and action potentials (APs) were recorded from the 3 electrodes on the longitudinal muscle but no waves were registered from those on the circular muscle. After longitudinal muscle myotomy was performed between electrodes 1 and 2, PPs and APs were recorded from electrode 1 but not 2 and 3 and when performed proximally to electrode 1, no waves were registered. The rectal pressure increased concomitantly with occurrence of APs. Circular muscle myotomy effected no change in the rectal electric activity recorded from the 3 electrodes applied to the longitudinal muscle. In total muscle myotomy, the electric waves were recorded from the electrodes proximal but not distal to the myotomy. We propose that the motile activity of the rectal longitudinal muscle is initiated by the electric activity which appears to be triggered by the rectosigmoid pacemaker, while that of the circular muscle fibers is believed to be initiated by the stretch reflex induced by rectal distension. This concept is evidenced not only by the current findings but also by the histologic structure of the rectal musculature being of the unitary type of smooth muscles.  相似文献   

18.
Several complementary studies were undertaken on a single species of deep-sea fish (the eel Synaphobranchus kaupii) within a small temporal and spatial range. In situ experiments on swimming and foraging behaviour, muscle performance, and metabolic rate were performed in the Porcupine Seabight, northeast Atlantic, alongside measurements of temperature and current regime. Deep-water trawling was used to collect eels for studies of animal distribution and for anatomical and biochemical analyses, including white muscle citrate synthase (CS), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), and pyruvate kinase (PK) activities. Synaphobranchus kaupii demonstrated whole-animal swimming speeds similar to those of other active deep-sea fish such as Antimora rostrata. Metabolic rates were an order of magnitude higher (31.6 mL kg(-1) h(-1)) than those recorded in other deep-sea scavenging fish. Activities of CS, LDH, MDH, and PK were higher than expected, and all scaled negatively with body mass, indicating a general decrease in muscle energy supply with fish growth. Despite this apparent constraint, observed in situ burst or routine swimming performances scaled in a similar fashion to other studied species. The higher-than-expected metabolic rates and activity levels, and the unusual scaling relationships of both aerobic and anaerobic metabolism enzymes in white muscle, probably reflect the changes in habitat and feeding ecology experienced during ontogeny in this bathyal species.  相似文献   

19.
Power produced by red myotomal muscles of fish during cruise swimming appears seldom maximized, so we sought to investigate whether economy may impact or dominate muscle function. We measured cost of transport (COT) using oxygen consumption and the strain trajectories and electromyographic activity of red muscle measured at anterior (ANT) and posterior (POST) locations while Atlantic cod (Gadus morhua) swam steadily at speeds between 0.3 and 1.0 body lengths (BL) s(-1). We then measured the power produced by isolated segments of red muscle when activated either as in the swimming cod or such that maximal net power was produced. Patterns of activation during swimming were not optimal for power output and were highly variable between tail beats, particularly at the ANT location and at slow swim speeds. Muscle strain amplitude did not increase until swimming speed reached 0.9 (ANT) versus 0.5 (POST) BL s(-1). These limited power to only 53% (ANT) and 71% (POST) of maximum at slower swim speeds and to 70%-80% of maximum at high swim speeds. COT (resting metabolism subtracted) was minimal at the slowest swim speed, surprisingly, where power was most impaired by activation and strain. Thus, production of powered forces for maneuverability/stability appeared to greatly impact red muscle function during cruise swimming in cod, particularly at slow speeds and in ANT muscle.  相似文献   

20.
Endurance and swimming speed were measured in mackerel, herring and saithe when they were induced by the optomotor response to swim at prolonged speeds along a 28-m circular track through still water in a 10-m diameter gantry tank. The maximum sustained swimming speed ( U ms was measured as body lengths per second ( b.l.s −1) for each species and for saithe of different size groups. Herring with U ms of 4.06 b.l.s −1 (25.3 cm, 13.5°C) were the fastest, mackerel U ms was 3.5 b.l.s 1 (33 cm, 11.7°C) and saithe (14.4°C) showed a size effect where U ms at 25 cm was 3.5 b.l.s 1 and at 50 cm 2.2 b.l.s 1. When swimming at speeds higher that U ms, all three species showed reduced endurance as speed increased. How the curved track reduces the swimming speed is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号