首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This report discusses fundamental limitations in attempting to derive cell size, shape, or distribution from the two-dimensional images provided by conventional electron microscopy. Morphometric or stereologic measurement of random thin sections is a convenient way to obtain some information of this type. However, it cannot provide complete, objective information about real size, shape, or connectivity of cells containing irregular or unevenly distributed structures or nonuniform populations of cells. Anisotropic structures require analysis of a complete set of serial sections. The analysis may utilize either stereo, mono, or tilted optical slices, and subsequent integration of this information into a single 3-D computer data set. In this study, we analyze stereo pairs of high-voltage electron micrographs of serial thick sections (0.5 μm) and critical-point-dried whole-cell mounts of rat brain astroglial cell cultures. The Z-axis resolution is increased by digitizing contours at discrete levels within each stereo view. This is accomplished with a new type of stereoscopic contouring device. We calculated area and volume changes accompanying hypo-osmolar swelling and spontaneous reversal of the swelling. (Regulatory Volume Decrease-RVD). An understanding of the mechanism of swelling of astroglial cells is important for improving the treatment of brain injury. The total cell-volume results are comparable with results previously obtained using nonmetabolized, radioactively tagged compounds that diffuse into various cell compartments. Our serial-section and whole-cell data also provide new information about the relative swelling of nucleus, cytoplasm, and individual organelles such as mitochondria. The basic biological problem being approached is whether homeo-stasis of cell function is accompanied by surface area and volume regulation of enzyme-rich membranes and organelles. Conversely, it is proposed to explore the possibility that abnormal organelle areas and volumes are indicators of perturbations of cell division, metabolism, or gene expression.  相似文献   

2.
Structural changes of carcinoma cells and fibroblasts migrating through small spaces in the elastic-collagen reticulum of mouse peritoneum have been studied by high-voltage electron microscopy of serial thick sections and by computer graphics reconstruction of cell profiles. The change of shape profile of an individual cell, between serial sections is large and the distribution of organelles is very non-uniform and changes markedly between sections. Conclusions about adhesion, intercell contact, cell shape and polarization of cytoplasmic organelles could only be reached by assessing a complete set of serial sections. Our preliminary results suggest that interesting structural changes occur in both carcinoma cells and fibroblasts when migrating through this tissue.  相似文献   

3.
Stereology, or the derivation of quantitative, three-dimensional (3-D) data about cells by statistical analysis of the structures of random sections, is widely used in cytology and pathology. However, there are situations where this approach is inadequate, and only an analysis of a homogeneous population of whole cells will give the required results. This involved 3-D reconstruction from physical or optical sections, or tomography or photogrammetry of whole-cell mounts. Use of stereo views of individual sections or projections adds considerably to the information available for both contouring and reconstruction. Recent image-processing advances in clinical radiography have shown, for the first time, that rapid, high-resolution digitization and contrast enhancement enable nearly all structural details to be routinely extracted from the micrographs and adequately portrayed. Three-D whole-cell reconstructions provide the digital data for many kinds of morphometric measurements on both whole cells and their individual organelles and membranes. Rapid fixation or freezing allows improved quantitative structure/function correlations of organelles with disturbances in cell metabolism or gene expression.  相似文献   

4.
Stereology, or the derivation of quantitative, three-dimensional (3-D) data about cells by statistical analysis of the structures of random sections, is widely used in cytology and pathology. However, there are situations where this approach is inadequate, and only an analysis of a homogeneous population of whole cells will give the required results. This involved 3-D reconstruction from physical or optical sections, or tomography or photogrammetry of whole-cell mounts. Use of stereo views of individual sections or projections adds considerably to the information available for both contouring and reconstruction. Recent image-processing advances in clinical radiography have shown, for the first time, that rapid, high-resolution digitization and contrast enhancement enable nearly all structural details to be routinely extracted from the micrographs and adequately portrayed. Three-D whole-cell reconstructions provide the digital data for many kinds of morphometric measurements on both whole cells and their individual organelles and membranes. Rapid fixation or freezing allows improved quantitative structure/function correlations of organelles with disturbances in cell metabolism or gene expression.  相似文献   

5.
Ultrastructural investigations of cells and organelles by transmission electron microscopy (TEM) usually lead to two-dimensional information of cell structures without supplying exact quantitative data due to the limited number of investigated ultrathin sections. This can lead to misinterpretation of observed structures especially in context of their three-dimensional (3D) assembly. 3D investigations and quantitative morphometric analysis are therefore essential to get detailed information about the arrangement and the amount of subcellular structures inside a cell or organelle, respectively, especially when the plant sample was exposed to environmental stress. In the present research, serial sectioned chloroplasts, mitochondria, and peroxisomes from first year spruce needles (Picea abies (L.) Karst.) were 3D reconstructed and digitally measured using a computer-supported image analysis system in order to obtain a detailed quantitative characterization of complete cell organelles including precise morphological data of drought-induced fine structural changes. In control plants, chloroplast volume was composed of 56% stroma, 15% starch, 27% thylakoids, and 2% plastoglobules. In drought-stressed chloroplasts, the relative volume of both the thylakoids and the plastoglobules significantly increased to 37% and 12%, respectively. Chloroplasts of stressed plants differed from control plants not only in the mean thylakoid and plastoglobules content but also in the complete lack of starch grains. Mitochondria occurred in variable forms in both control and stressed samples. In stressed plants, mitochondria showed a significant smaller mean volume which was only 81% when compared with the control organelles. Peroxisomes were inconspicuous in both samples and their volume did not differ between control and drought-stressed samples. The present study shows that specific subcellular structures are subject to significant quantitative changes during drought stress of spruce needles giving a detailed insight in adaptation processes of the investigated cell organelles.  相似文献   

6.
Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling-inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.  相似文献   

7.
Acute exposure to 100 mM isotonic ethanol (EtOH) increased intracellular Ca2+ concentration ([Ca2+]i), induced cell swelling, and transformed actin cytoskeleton in astroglial primary cultures from rat cerebral cortex. Fluorometric recordings of fluo-3AM- or fura-2AM-incubated astroglial cells revealed that EtOH induced [Ca2+]i transients in a small population of the cells. Cell swelling was estimated using a new method based on three-dimensional fluorescence imaging in conjunction with image analysis and graphic visualization techniques. The method provides detailed results concerning the reformation of structural shape and specific volume alterations, as well as total proportions between the different states. Astroglial cell swelling was registered and quantified in 7 of 39 cells chosen from 12 different coverslips. EtOH also induced reversible conformational changes in filamentous actin, appearing as increases in ring formations and a more dispersed appearance of the filaments. Filamentous actin was stained with Alexa phalloidin after incubation with EtOH for varied periods. The results presented here suggest that EtOH affects astrocytes in a way that could be of physiological relevance.  相似文献   

8.
The analysis of ultrathin serial sections as 3-dimensional (3D) information requires interpretation and display of a large amount of data. We suggest a simple way to solve this problem; it permits presentation of a series of sections as a 3D color image of good quality. It involves a picture system with specialized hardware and software written for this purpose. 3D images of cellular organelles have been drawn either by manually defining the contour of the objects or by thresholding of the volumes in the structures. These 2 methods allow rapid drawing of the image on the screen. It is possible to determine the position, shape and size of 3D structures. This interactive system allows the user to choose between several options: colors, removal of parts of the object, and cutout.  相似文献   

9.
This review attempts a physical definition of the technical problems and achievements in applying the high-voltage electron microscope (HVEM) to biological and medical research. It is hoped that the review will summarize for biologists, funding agencies, and institutions the achievements of the HVEM, its future prospects, and the main problem areas that still need to be explored. At present it is not known whether future HVEMs will favor the fixed beam or the scanning transmission electron microscopy (STEM) mode. The STEM mode offers reduced radiation damage as a result of more efficient electron detection and ease of manipulation of the collected signals by separating the elastic and inelastic signals. Energy filtration to remove the inelastic signal provides a means to enhance the contrast and improve the resolution for thick specimens. Several prototype STEM-mode HVEMs are now under development and it is expected that, in a few years, comparisons of fixed beam and STEM modes will be possible. The review discusses several HVEM instrument features that remain poorly developed. In the area of image recording a photographic emulsion has been designed to give optimized performance at an acceleration voltage of 1 MV. However, this remains unavailable commercially. Conversion of the HVEM electron image to a usable light image by phosphors etc., involves some difficulties, making it difficult to obtain good performance from TV systems. Since the HVEM is particularly useful for three-dimensional imaging, the further development of improved goniometers for stereo viewing and image reconstruction is important. The large volume available in the objective specimen volume and the increased penetration at high acceleration voltages make the HVEM particularly suitable for the application of environmental chambers in the microscopy and electron diffraction of thick wet specimens. An improved signal-to-noise ratio improves the prospects for elemental analysis at high acceleration voltages. When carefully carried out, improved resolution can be obtained in dark-field over that obtainable at 100 kV. Dark-field provides the easiest way to obtain high contrast on weakly stained or unstained objects. Its further improvement requires the use of specially thick and shaped beam stops and apertures that are not penetrated by the 1 MV beam. Recent HVEM studies of whole cells and microorganisms are reviewed. These studies already show that the former thin-section approach led to some incorrect ideas about the shape of some organelles and their three-dimensional relationships. This new information is proving important in helping to establish the function of fibrillar and membranous components of the cell. The most important limitation in examining thick sections is the large depth of field that causes excessive overlap of in-focus structures in stereo views of thick sections. In a few cases special specific heavy metal stains have been developed to overcome this problem, but an optical solution would be more generally applicable. Attempts are now being made to unscramble overlapped detail by applying the image reconstruction techniques of tomography and holography. It is concluded that even with existing techniques, the HVEM examination of thick sections provides a very useful improvement in sampling statistics and in three-dimensional imaging of cell structures over that obtainable by examining thin sections at a lower acceleration voltage (100 kV). Randomized author sequence.  相似文献   

10.
Methods of determining the numerical density of cell organelles described in literature were critically reviewed in a morphometrical and stereological study of muscle cell mitochondria (heart muscle cells, diaphragm cells, sceletal muscle cells). A review of the method described by WEIBEL and GOMEZ showed that the numerical density of the mitochondria depends to a great extent on their shape and not so much on their size distribution. For this reason serial sections should be used to determine the shape factor in biological objects of unknown geometric shape. Generally, the numerical densities of mitochondria determined by using the method proposed by DEHOFF and RHINES were higher than those obtained with the method described by WEIBEL and GOMEZ. This is attributed to certain corrections used in the former method. Elaborate computations are generally involved and the geometric shapes of the object examined must be known in order to determine the numerical density of cell organelles or of other biological structures. The numerous sources of error involved in these methods give this parameter the character of an objective estimate. For this reason it is recommended that the value obtained should be checked by determining a two-dimensional parameter. Our examinations of heart muscle mitochondria showed good agreement between the two parameters.  相似文献   

11.
《Micron (1969)》1981,12(3):227-257
Although high voltage electron microscopes have been in general use over the past decade microscopists have tended to ignore the contribution their use could make to the study of plant ultrastructure. The majority of biological high voltage research has been restricted to the fields of zoology and bio-medicine.The high voltage electron microscope (HVEM) has several advantages over the conventional transmission electron microscope (CTEM) when applied to biological specimens. These include increased penetrating power of the electron beam, reduced chromatic abberation in thick specimens, and both reduced beam heating and ionization damage. All these factors permit the observation of thick sections, whole cells and hydrated specimens. Most botanical HVEM research has been restricted to the study of thick sectioned material. Various staining techniques have been applied to overcome the decrease in image contrast at high accelerating voltages, but the commonest have been modifications of lead and uranium stains previously developed for thin sections. Selective staining can simplify the mass of information in a thick specimen thus specific structures may be studied against an unstained background. Acidified phosphotungstic acid can be used to stain the plasma membrane and osmium impregnation will selectively stain many of the cytoplasmic membranes in a variety of specimens. Other techniques for the selective localization of cell components, such as enzyme cytochemistry and autoradiography have yet to be fully exploited by high voltage electron microscopists.Interpretation of the great quantity of information in a thick specimen can be facilitated by tilting the specimen and producing stereo pairs. Quantitative depth information can be extracted from stereo pairs by the use of measuring mirror stereoscopes or by direct measurement from each member of a stereo pair. Serial thick sectioning has been employed as an alternative to prolonged serial thin sectioning to aid in the reconstruction of large specimens.Stereo images can be viewed in a variety of ways with lenticular pocket stereoscopes, reflecting mirror stereoscopes, prismatic spectacles, polarized spectacles when projected onto a non depolarizing screen or presented on TV monitors.  相似文献   

12.
The histochemical localization of enzymes associated with purine nucleoside metabolism indicates that glial cells might participate in the regulation of these compounds in the central nervous system. In the present study we examined the histochemical localization of purine nucleoside phosphorylase (PNPase) in sections from adult rat brain. Some sections were also sequentially stained immunocytochemically for astroglial or microglial cells utilizing glial fibrillary acidic protein (GFAP) or OX-42 antibodies, respectively. Our observations showed that PNPase was restricted to glial cells, whereas neurons always remained negative. Brain sections stained for both PNPase and GFAP showed that the GFAP-positive astroglial cells were always PNPase positive. Other PNPase-positive but GFAP-negative cells were also observed. These cells resembled microglial cells, and brain sections reacted for both PNPase and OX-42 confirmed this by showing that the major part of OX-42-positive microglial cells were PNPase positive. In these sections, the PNPase-positive but OX-42-negative cells present resembled astroglial cells. From our double staining experiments, we conclude that PNPase is present in both astroglial and microglial cells in normal adult brain.  相似文献   

13.
The basic stereological formulas for estimating volume (Vv) and surface (Sv) densities are strictly valid only for true infinitely thin sections; the use of "ultrathin" sections of finite thickness T introduces systematic errors, mostly in the sense of overestimation of the parameters. These errors depend on the size and shape of the structural elements and on T. Correction factors for this effect of T are derived by considering model structures that simulate the shape and arrangement of subcellular organelles: (a) spherical vesicles, (b) disks as models for rough endoplasmic reticulum (RER) cisternae, (c) cylindrical tublules as models for smooth endoplasmic reticulum (SER) tubules, microvilli, etc. For vesicles, a model of discrete convex spherical particles is assumed; the correction factors consider loss of caps due to grazing sections and size distribution of the vesicles. The disk and tubule models are used in connection with the new integral geometric formulas of R.E. Miles which consider random aggregates of "inter-penetrating" particles so that the resultant structure is non- convex and thus approximates in nature the networks characteristic of endoplasmic reticulum (ER). Some practical examples relative to liver cells show that the errors due to section thickness may be of the order of 20-40% or more. Computation formulas as well as graphs are given for the determination of the correction factors for Vv and Sv.  相似文献   

14.
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 μm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.  相似文献   

15.
Cytokinesis in plants involves both the formation of a new wall and the partitioning of organelles between the daughter cells. To characterize the cellular changes that accompany the latter process, we have quantitatively analyzed the cell cycle-dependent changes in cell architecture of shoot apical meristem cells of Arabidopsis thaliana. For this analysis, the cells were preserved by high-pressure freezing and freeze-substitution techniques, and their Golgi stacks, multivesicular bodies, vacuoles and clathrin-coated vesicles (CCVs) characterized by means of serial thin section reconstructions, stereology and electron tomography techniques. Interphase cells possess ∼35 Golgi stacks, and this number doubles during G2 immediately prior to mitosis. At the onset of cytokinesis, the stacks concentrate around the periphery of the growing cell plate, but do not orient towards the cell plate. Interphase cells contain ∼18 multivesicular bodies, most of which are located close to a Golgi stack. During late cytokinesis, the appearance of a second group of cell plate-associated multivesicular bodies coincides with the onset of CCV formation at the cell plate. During this period a 4× increase in CCVs is paralleled by a doubling in number and a 4× increase in multivesicular bodies volume. The vacuole system also undergoes major changes in organization, size, and volume, with the most notable change seen during early telophase cytokinesis. In particular, the vacuoles form sausage-like tubular compartments with a 50% reduced surface area and an 80% reduced volume compared to prometaphase cells. We postulate that this transient reduction in vacuole volume during early telophase provides a means for increasing the volume of the cytosol to accommodate the forming phragmoplast microtubule array and associated cell plate-forming structures.  相似文献   

16.
In all the strains of M. gallisepticum investigated, a protein with apparent molecular weight 40 kDa was revealed by immunoblotting with polyclonal anti-calf brain tubulin antibodies and monoclonal anti-chicken alpha-tubulin antibodies. In other 8 investigated Mycoplasma species no positive reactions with the same antibodies were found. The M. Gallisepticum cells were examined under electron microscope on fine serial sections and on some sections going at different angles to the long cell axis. Undermembrane system of tubules was revealed and the intracellular pattern of the tubular structures were reconstructed. The immunoelectron microscopic data suggest that tubulin-like protein may be included into the structures.  相似文献   

17.
Zellnig G  Zechmann B  Perktold A 《Protoplasma》2004,223(2-4):221-227
Summary. Selected cell organelles were investigated at a high level of resolution with the transmission electron microscope, using ultrathin serial sections to create three-dimensional reconstructions. On the basis of these reconstructions, morphological data of chloroplast fine structures, mitochondria, and peroxisomes from control and drought-stressed spinach leaves were evaluated and compared. Mesophyll cell chloroplasts of control plants contained 60% stroma, 23% thylakoids, and 16% starch. In drought-stressed plants, the volume of both the stroma and the thylakoids increased to 68% and 32%, respectively. The amount of plastoglobuli was about 0.3% in both samples. Chloroplasts of stressed plants differed from control plants not only in the thylakoid and stroma values but also in the lack of starch grains. Mitochondria occurred in variable forms in control and stressed samples. In stressed plants, mitochondria had only 65% of the volume compared with control plants. Peroxisomes were inconspicuous.  相似文献   

18.
The formation of the plastid-dividing ring (PD ring) and mitochondrion-dividing ring (MD ring) was studied in a highly synchronous culture of the unicellular red alga Cyanidioschyzon merolae. The timing and the order of formation of the MD and PD rings were determined by observing organelles around the onset of their division, using transmission electron microscopy. In  C. merolae, there is one chloroplast and one mitochondrion per cell, and the shape of the chloroplast changes sequentially from acorn-like, to round, to trapezoidal, to peanut-shaped, in that order, during the early stage of chloroplast division. None of the cells with acorn-shaped or round chloroplasts contained organelles with PD rings or MD rings, while all of the cells with peanut-shaped chloroplasts contained organelles with both PD rings and MD rings. In cells with peanut-shaped chloroplasts, the PD and MD rings were double ring structures, with an outer ring located on the cytoplasmic face of the outer membrane of the organelle, and an inner ring located in the matrix beneath the inner membrane. These results suggested that the double ring structures of the PD ring and the MD ring form when chloroplasts are trapezoidal in shape. Detailed three-dimensional observation of cells with trapezoidal chloroplasts revealed the following steps in the formation of the double ring structures of the PD and MD rings: (i) the inner ring of the PD ring forms first, followed by the outer ring; (ii) then the MD ring forms and becomes visible; (iii) when the double ring structures of the two rings have formed, the microbody then moves from its remote location to the plane of division of the mitochondrion and contraction of the PD and MD rings commences. These steps were also confirmed by computer-aided three-dimensional reconstruction of the images from serial thin sections. This study reveals the order of formation of the double ring structures of the PD and MD rings, and the behavior of the microbody around the onset of division of plastids and mitochondria. The results also provide the first evidence that the inner PD ring is not a tension element formed by the contractile pressure but a definite structure, independent of the outer ring. Received: 31 March 1998 / Accepted: 14 May 1998  相似文献   

19.
Ammonia-induced swelling of astrocytes is a primary cause of brain edema associated with acute hepatic encephalopathy. Previous studies have shown that ammonia transiently increases cGMP in brain in vivo and in cultured astrocytes in vitro . We hypothesized that protein kinase G (PKG), an enzyme activated by cGMP and implicated in regulation of cell shape, size, and/or volume in peripheral and CNS cells, may play a role in the ammonia-induced astrocytic volume increase. Treatment of cultured rat cortical astrocytes with 1 or 5 mM NH4Cl (ammonia) for 24 h increased their cell volume by 50% and 80% above control, respectively, as measured by confocal imaging followed by 3D computational analysis. A cGMP analog, 8-(4-chlorophenylthio)-cGMP, increased the cell volume in control cells and potentiated the increase in 1 mM ammonia-treated cells. A soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) abrogated, and a PKG inhibitor [8-(4-chlorophenylthio)-cGMP-thioate, Rp-isomer] dose-dependently reduced the cell volume-increasing effect of 5 mM ammonia. The results suggest that (i) PKG may play a permissive role in ammonia-induced astrocytic swelling and (ii) elevation of brain cGMP associated with acute exposure to ammonia in vivo may aggravate the ensuing brain edema.  相似文献   

20.
Computer aided three dimensional (3-D) reconstruction of cells from two isolates of protozoa of the genus Phytomonas, trypanosomatids found in plants, were made from 0.3 mum thick sections, imaged on a Zeiss 902 electron microscope with a energy filter for inellastically scattered electrons, in order to obtain information about glycosomal shape diversity. Direct counts of peroxisomes (glycosomes) from Phytomonas sp. from Chamaesyce thymifolia indicated that there were fewer glycosomes per cell than the simple count of ultrathin section profiles would suggest and that these organelles could be long and branched. On the other hand, the stacked glycosomes observed in the isolate from Euphorbia characias were small individual structures and no connection was seen between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号