首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemically active (EA) biofilms were formed on metallic dimensionally stable anode-type electrode (DSA), embedded in garden compost and polarized at +0.50 V/SCE. Analysis of 16S rRNA gene libraries revealed that biofilms were heavily enriched in Deltaproteobacteria in comparison to control biofilms formed on non-polarized electrodes, which were preferentially composed of Gammaproteobacteria and Firmicutes. Among Deltaproteobacteria, sequences affiliated with Pelobacter and Geobacter genera were identified. A bacterial consortium was cultivated, in which 25 isolates were identified as Geobacter bremensis. Pure cultures of 4 different G. bremensis isolates gave higher current densities (1400 mA/m(2) on DSA, 2490 mA/m(2) on graphite) than the original multi-species biofilms (in average 300 mA/m(2) on DSA) and the G. bremensis DSM type strain (100-300 A/m(2) on DSA; 2485 mA/m(2) on graphite). FISH analysis confirmed that G. bremensis represented a minor fraction in the original EA biofilm, in which species related to Pelobacter genus were predominant. The Pelobacter type strain did not show EA capacity, which can explain the lower performance of the multi-species biofilms. These results stressed the great interest of extracting and culturing pure EA strains from wild EA biofilms to improve the current density provided by microbial anodes.  相似文献   

2.
Electricity production by Geobacter sulfurreducens attached to electrodes   总被引:27,自引:0,他引:27  
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 micro M), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 micro mol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (E(o)' =+0.37 V). The production of current in microbial fuel cell (65 mA/m(2) of electrode surface) or poised-potential (163 to 1,143 mA/m(2)) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

3.
Electrode materials play a key role in enhancing the electricity generation in the microbial fuel cell (MFC). In this study, a new material (Ti-TiO(2)) was used as an anode electrode and compared with a graphite electrode for electricity generation. Current densities were 476.6 and 31 mA/m(2) for Ti-TiO(2) and graphite electrodes, respectively. The PCR-DGGE analysis of enriched microbial communities from estuary revealed that MFC reactors were dominated by Shewanella haliotis, Enterococcus sp., and Enterobacter sp. Bioelectrochemical kinetic works in the MFC with Ti-TiO(2) electrode revealed that the parameters by non-linear curve fitting with the confidence bounds of 95% gave good fit with the kinetic constants of η (difference between the anode potential and anode potential giving one-half of the maximum current density) = 0.35 V, K (s) (Half-saturation constant) = 2.93 mM and J (max) = 0.39 A/m(2) for T = 298 K and F = 96.485 C/mol-e(-). From the results observed, it is clear that Ti-TiO(2) electrode is a promising candidate for electricity generation in MFC.  相似文献   

4.
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 μM), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 μmol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (Eo′ =+0.37 V). The production of current in microbial fuel cell (65 mA/m2 of electrode surface) or poised-potential (163 to 1,143 mA/m2) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

5.
A new one-compartment fuel cell was composed of a rubber bunged bottle with a center-inserted anode and a window-mounted cathode containing an internal, proton-permeable porcelain layer. This fuel cell design was less expensive and more practical than the conventional two-compartment system, which requires aeration and a ferricyanide solution in the cathode compartment. Three new electrodes containing bound electron mediators including a Mn(4+)-graphite anode, a neutral red (NR) covalently linked woven graphite anode, and an Fe(3+)-graphite cathode were developed that greatly enhanced electrical energy production (i.e., microbial electron transfer) over conventional graphite electrodes. The potentials of these electrodes measured by cyclic voltametry at pH 7.0 were (in volts): +0.493 (Fe(3+)-graphite); +0.15 (Mn(4+)-graphite); and -0.53 (NR-woven graphite). The maximal electrical productivities obtained with sewage sludge as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode were 14 mA current, 0.45 V potential, 1,750 mA/m(2) current density, and 788 mW/m(2) of power density. With Escherichia coli as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode, the maximal electrical productivities obtained were 2.6 mA current, 0.28 V potential, 325 mA/m(2) current density, and 91 mW/m(2) of power density. These results show that the amount of electrical energy produced by microbial fuel cells can be increased 1,000-fold by incorporating electron mediators into graphite electrodes. These results also imply that sewage sludge may contain unique electrophilic microbes that transfer electrons more readily than E. coli and that microbial fuel cells using the new Mn(4+)-graphite anode and Fe(3+)-graphite cathode may have commercial utility for producing low amounts of electrical power needed in remote locations.  相似文献   

6.
Biofouling is the undesirable adhesion and development of microorganisms and macroorganisms in a water environment. An electrochemical antifouling system based on management of primary adhesion of microorganisms was developed employing titanium electrode for antifouling of seawater cooling pipes and marine infrastructures. The system consists of an electrochemical reaction-monitoring unit, a power control unit, and a potential/current remote monitoring and a control unit. Titanium plates and iron plates were used as the working and counter electrode, respectively. Field experiment was conducted in the seawater cooling pipeline system of a thermal power station. Four titanium electrodes with 1.0 m length and 3.0 m width were set in the seawater intake pit and current density was controlled at 50-100 mA/m(2). The electrode surface maintained clean conditions for 2 years. The average wet weight of fouling organisms on the titanium electrode surface was below 100 g/m(2) whereas the corresponding wet weight was above 10 kg/m(2) on the control surface. Using titanium as the electrode material, chlorine and hypochlorite are not generated. The developed electrochemical antifouling system provided an effective, environmentally friendly, and feasible techniques for remote operations.  相似文献   

7.
Recently microbial fuel cells (MFCs) have attracted increasing interests in both environmental and energy fields. Among the various MFC configurations, miniature microbial fuel cell (mini-MFC) has a great potential for the application in medical, communication and other areas because of its miniature volume and high output power density. In this work, a 25-μL single-chamber mini-MFC was fabricated using the photolithography technique. The plate-shaped gold anodic electrode in the mini-MFC showed a higher electrochemical activity than the stripe-shaped one. A biofilm of Shewanella oneidensis MR-1 was formed on the surface of gold electrode in this micro-liter-scale MFCs. As a result, a maximum power density of 29 mW/m(2) and a maximum current density of 2148 mA/m(2) were achieved by this single-chamber mini-MFC.  相似文献   

8.
Simultaneous organics removal and bio-electrochemical denitrification using a microbial fuel cell (MFC) reactor were investigated in this study. The electrons produced as a result of the microbial oxidation of glucose in the anodic chamber were transferred to the anode, which then flowed to the cathode in the cathodic chamber through a wire, where microorganisms used the transferred electrons to reduce the nitrate. The highest power output obtained on the MFCs was 1.7 mW/m(2) at a current density of 15 mA/m(2). The maximum volumetric nitrate removal rate was 0.084 mg NO(3)(-)-N cm(-2) (electrode surface area) day(-1). The coulombic efficiency was about 7%, which demonstrated that a substantial fraction of substrate was lost without current generation.  相似文献   

9.
Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m(-2) of electrode surface to a maximal level of 4.31 W m(-2) (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter(-1) day(-1) and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.  相似文献   

10.
Low-level direct current (0.2–1.8 mA) was demonstrated to be an antitumor agent on two different murine tumor models (fibrosarcoma Sa-1 and melanoma B-16), and has been suggested for regional cancer treatment. Its antitumor effect was achieved by introduction of single or multiple–array needle electrodes (Pt-Ir alloy) in the tumor and (an)other electrode(s) subcutaneously in its vicinity. The electrode inserted in the tumor was made anodic (anodic electrotherapy, ET) or cathodic (cathodic ET). In control groups, animals were subjected to exactly the same procedures with needle electrodes inserted at usual sites without current. In single-stimulus ET performed after the tumors have reached approximately 50 mm3 in volume with 0.2, 0.6, and 1.O mA for 30, 60, and 90 min, cathodic ET exhibited better antitumor effect than anodic ET. In both cases and at all ET durations, the antitumor effect depended proportionally on the current level applied. The antitumor effect was evaluated by following tumor growth and by microscopic estimation of the necrotization of the tumor area immediately after ET, and 24, 48, and 72 h posttreatment.

Necrotization produced by cathodic ET was observed to be immediate and extensive whereas anodic ET resulted in increased necrotization only at 24 h posttreatment. In both cases the extent of necrosis was significantly higher than in control and was centrally located (site of electrode), whereas in controls it was sporadic, distributed randomly over the whole tumor area. When current was delivered via multiple–array electrode ET, the antitumor effect was slightly better in cathodic ET compared to single-electrode ET. Employing cathodic multiple-array electrode ET and using higher currents, i.e., 1.0, 1.4, and 1.8 mA in melanoma B-16, 20% and 40% cures were achieved by 1.4 and 1.8 mA single-shot ET of 1 h duration, respectively, whereas in fibrosarcoma Sa-1 no cures were accomplished. In general, different susceptibility of the two tumor models to ET was noticeable. Comparing tumor growth and necrotization after the application of direct current (0.6 mA) and alternating current (0.0 mA mean, 0.6 mA RMS), it appeared that alternating current had no impact either on necrotization of tumor tissue or on tumor growth. ET was performed on normal tissues as well. In subcutaneous tissue, thigh muscle, and liver of healthy mice immediately after 1 h of treatment using 0.6 mA in both cathodic and anodic modes, local necrotization at the site of electrode insertion was evident, with signs of acute inflammation in the vicinity. In anodic ET, vacuolization around the electrode was noticed.  相似文献   

11.
大肠杆菌的直流电场刺激过程   总被引:1,自引:0,他引:1  
孙西同  马洁  孙晓彦  刘镔 《微生物学通报》2010,37(10):1440-1446
以钛网电极和铂网电极对培养瓶中大肠杆菌生长过程进行加电刺激,研究其在直流电场作用下的生长情况,并结合循环伏安扫描、恒电流、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)及测定菌体ATP酶活力等技术对大肠杆菌的直流电场刺激过程进行研究。结果表明,在0-0.2275mA/cm2范围内,随着电流密度的增加,直流电场对大肠杆菌生长量的增长促进作用逐渐增加,而0.0455mA/cm2的电场则是获得最大活菌量的最适电流密度;通过对析氢活性不同的铂网电极与钛网电极通加相同电流密度的电场,发现铂电极培养体系菌体生长优于钛电极培养体系菌体的生长。经验证发现引起这种变化的原因主要是水的阴极电解产物吸附氢和氢气比例的不同引起的;同时发现在0.091mA/cm2电流密度下,直流电场能有效提高ATP酶的活力,在8h时通电菌样酶活为不通电菌样酶活的3.2倍;通过对0.0455mA/cm2直流电场刺激后的菌体蛋白进行SDS-PAGE分析发现加电菌体在分子量25kD与35kD左右多肽表达量明显高于不加电菌体的多肽表达量,而在分子量为66.2kD左右时多肽表达量低于不加电菌体多肽表达量。  相似文献   

12.
In microbial fuel cells (MFCs) bacteria generate electricity by mediating the oxidation of organic compounds and transferring the resulting electrons to an anode electrode. The objective of this study was to test the possibility of generating electricity with rumen microorganisms as biocatalysts and cellulose as the electron donor in two-compartment MFCs. The anode and cathode chambers were separated by a proton exchange membrane and graphite plates were used as electrodes. The medium in the anode chamber was inoculated with rumen microorganisms, and the catholyte in the cathode compartment was ferricyanide solution. Maximum power density reached 55 mW/m(2) (1.5 mA, 313 mV) with cellulose as the electron donor. Cellulose hydrolysis and electrode reduction were shown to support the production of current. The electrical current was sustained for over 2 months with periodic cellulose addition. Clarified rumen fluid and a soluble carbohydrate mixture, serving as the electron donors, could also sustain power output. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA genes revealed that the microbial communities differed when different substrates were used in the MFCs. The anode-attached and the suspended consortia were shown to be different within the same MFC. Cloning and sequencing analysis of 16S rRNA genes indicated that the most predominant bacteria in the anode-attached consortia were related to Clostridium spp., while Comamonas spp. abounded in the suspended consortia. The results demonstrated that electricity can be generated from cellulose by exploiting rumen microorganisms as biocatalysts, but both technical and biological optimization is needed to maximize power output.  相似文献   

13.
Bioelectrocatalytic oxidation of theophylline was studied at gold and graphite electrodes modified with microbial theophylline oxidase (ThOx), a multi-cofactor redox enzyme capable of selective oxidation of theophylline. Gold electrodes were additionally modified with self-assembled monolayers (SAMs) of (-OH)- and (-NH(2))-terminated alkanethiols of different chain lengths, to achieve compatibility between ThOx and the electrode surface. On graphite, ThOx was either physically co-adsorbed with a surfactant didodecyldimethylammonium bromide (DDAB), or entrapped within an Os-redox-polymer film. At all electrodes, ThOx was bioelectrocatalytically active; direct electrochemistry of ThOx in the absence of theophylline was followed only at the SAM-modified gold electrodes. Direct electrochemistry of ThOx correlated with redox transformations of the heme domain of ThOx, with a E(o/)of -110+/-2 mV versus Ag|AgCl, at pH 7. Bioelectrocatalytic oxidation of theophylline was optimal at mixed (-OH)/(-NH(2))-terminated SAMs; co-adsorption of ThOx with DDAB improved the bioelectrocatalytic performance of the ThOx-electrode. In both cases, the response to theophylline was within the mM range. Alternatively, a reagentless ThOx-electrode based on ThOx cross-linked within the Os-redox-polymer matrix demonstrated a linear response to theophylline within the physiologically important 0.02-0.6mM (3.6-72 mg l(-1)) concentration range with a sensitivity of 52.1+/-7.8 mA cm(-2)M(-1).  相似文献   

14.
Chitosan (CHIT) scaffolds doped with multi-walled carbon nanotubes (CNT) were fabricated and evaluated for their utility as a microbial fuel cell (MFC) anodic material. High resolution microscopy verified the ability of Shewanella oneidensis MR-1 to directly colonize CHIT-CNT scaffolds. Cross-linking agents 1-ethyl-3-[3-dimethylaminopropyl] carbodimide hydrochloride (EDC), glutaraldehyde and glyoxal were independently studied for their ability to strengthen the CHIT-CNT matrix without disrupting the final pore structure. 2.5 vol% glyoxal was found to be the optimal cross-linker in terms of porosity (BET surface area=30.2 m(2) g(-1)) and structural stability. Glyoxyl and EDC cross-linked CHIT-CNT scaffolds were then studied for their ability to transfer electrons to underlying glassy carbon. Results showed an open circuit cell voltage of 600 mV and a maximum power density of 4.75 W/m(3) at a current density of 16 A/m(3) was achieved in non stirred batch mode, which compares well with published data using carbon felt electrodes where a power density of 3.5 W/m(3) at a current density of 7 A/m(3) have been reported. Additionally, CHIT-CNT scaffolds were impregnated into carbon felt electrodes and these results suggest that CHIT-CNT scaffolds can be successfully integrated with multiple support materials to create hybrid electrode materials. Further, preliminary tests indicate that the integrated scaffolds offer a robust macroporous electrode material that can be used in flow-through configurations.  相似文献   

15.
Exploring highly‐efficient and low‐cost electrodes for both hydrogen and oxygen evolution reaction (HER and OER) is of primary importance to economical water splitting. Herein, a series of novel and robust bifunctional boride‐based electrodes are successfully fabricated using a versatile Et2NHBH3‐involved electroless plating (EP) approach via deposition of nonprecious boride‐based catalysts on various substrates. Owing to the unique binder‐free porous nodule structure induced by the hydrogen release EP reaction, most of the nonprecious boride‐based electrodes are highly efficient for overall water splitting. As a distinctive example, the Co‐B/Ni electrode can afford 10 mA cm?2 at overpotentials of only 70 mV for HER and 140 mV for OER, and can also survive at large current density of 1000 mA cm?2 for over 20 h without performance degradation in 1.0 m KOH. Several boride‐based two‐electrode electrolyzers can achieve 10 mA cm?2 at low voltages of around 1.4 V. Moreover, the facile EP approach is economically viable for flexible and large size electrode production.  相似文献   

16.
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5mM), a short response time (within 5s), a large current density (1.176 mA cm(-2)), and high sensitivity (91mA M(-1)cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated.  相似文献   

17.
Bacteria able to transfer electrons to conductive surfaces are of interest as catalysts in microbial fuel cells, as well as in bioprocessing, bioremediation, and corrosion. New procedures for immobilization of Geobacter sulfurreducens on graphite electrodes are described that allow routine, repeatable electrochemical analysis of cell-electrode interactions. Immediately after immobilizing G. sulfurreducens on electrodes, electrical current was obtained without addition of exogenous electron shuttles or electroactive polymers. Voltammetry and impedance analysis of pectin-immobilized bacteria transferring electrons to electrode surfaces could also be performed. Cyclic voltammetry of immobilized cells revealed voltage-dependent catalytic current similar to what is commonly observed with adsorbed enzymes, with catalytic waves centered at -0.15 V (vs. SHE). Electrodes maintained at +0.25 V (vs. SHE) initially produced 0.52 A/m(2) in the presence of acetate as the electron donor. Electrical Impedance Spectroscopy of coatings was also consistent with a catalytic mechanism, controlled by charge transfer rate. When electrodes were maintained at an oxidizing potential for 24 h, electron transfer to electrodes increased to 1.75 A/m(2). These observations of electron transfer by pectin-entrapped G. sulfurreducens appear to reflect native mechanisms used for respiration. The ability of washed G. sulfurreducens cells to immediately produce electrical current was consistent with the external surface of this bacterium possessing a pathway linking oxidative metabolism to extracellular electron transfer. This electrochemical activity of pectin-immobilized bacteria illustrates a strategy for preparation of catalytic electrodes and study of Geobacter under defined conditions.  相似文献   

18.
He G  Gu Y  He S  Schröder U  Chen S  Hou H 《Bioresource technology》2011,102(22):10763-10766
A series of fiber electrodes with fiber diameters ranging from about 10 to 0.1 μm were tested as anodes in microbial fuel cells to study the effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes. A simple method of biofilm fixation and dehydration was developed for biofilm morphology characterization. Results showed that the current density of fiber anodes increased until the fiber diameter approached 1 μm which was about the length of the dominant microorganisms in biofilm. The highest current density was 3.08 mA cm(-2), which was obtained from fiber anode with high porosity of over 99% and fiber diameter of 0.87 μm. It was believed that the high current density was attributed to the high porosity, as well as proper fiber diameter which ensured formation of thick and continuous solid biofilms.  相似文献   

19.
A fuel cell was used to enrich a microbial consortium generating electricity, using organic wastewater as the fuel. Within 30 days of enrichment the maximum current of 0.2 mA was generated with a resistance of 1 k. Current generation was coupled to a fall in chemical oxygen demand from over 1,700 mg l–1 down to 50 mg l–1. Denaturing gradient gel electrophoresis showed a different microbial population in the enriched electrode from that in the sludge used as the inoculum. Electron microscopic observation showed a biofilm on the electrode surface and microbial clumps. Nanobacteria-like particles were present on the biofilm surface. Metabolic inhibitors and electron acceptors inhibited the current generation. 16S ribosomal RNA gene analysis showed a diverse bacterial population in the enrichment culture. These findings demonstrate that an electricity-generating microbial consortium can be enriched using a fuel cell and that the electrochemical activity is a form of anaerobic electron transfer.  相似文献   

20.
A NiFe‐based integrated electrode is fabricated by the spontaneous galvanic replacement reaction on an iron foam. Driven by the different electrochemical potentials between Ni and Fe, the dissolution of surface Fe occurs with electroless plating of Ni on iron foam with no need to access instrumentation and input energy. A facile cyclic voltammetry treatment is subsequently applied to convert the metallic NiFe to NiFeOx . A series of analytical methods indicates formation of a NiFeOx film of nanosheets on the iron foam surface. This hierarchically structured three dimensional electrode displays high activity and durability against water oxidation. In 1 m KOH, a current density of 1000 mA cm?2 is achieved at an overpotential of only 300 mV. This method is readily extended to fabricate CoFe or NiCoFe‐based integrated electrodes for water oxidation. Phosphorization of the bimetallic oxide (NiFeOx ) generates the bimetallic phosphide (NiFe‐P), which can act as an excellent electrocatalyst for hydrogen production in 1 m KOH. An alkaline electrolyzer is constructed using NiFeOx and NiFe‐P coated iron foams as anode and cathode, which can realize overall water splitting with a current density of 100 mA cm?2 at an overpotential of 630 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号