首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical evaluation of confocal microscopy images   总被引:1,自引:0,他引:1  
Zucker RM  Price OT 《Cytometry》2001,44(4):295-308
BACKGROUND: The coefficient of variation (CV) is defined as the standard deviation (sigma) of the fluorescent intensity of a population of beads or pixels expressed as a proportion or percentage of the mean (mu) intensity (CV = sigma/mu). The field of flow cytometry has used the CV of a population of bead intensities to determine if the flow cytometer is aligned correctly and performing properly. In a similar manner, the analysis of CV has been applied to the confocal laser scanning microscope (CLSM) to determine machine performance and sensitivity. METHODS: Instead of measuring 10,000 beads using a flow cytometer and determining the CV of this distribution of intensities, thousands of pixels are measured from within one homogeneous Spherotech 10-microm bead. Similar to a typical flow cytometry population that consists of 10,000 beads, a CLSM scanned image consists of a distribution of pixel intensities representing a population of approximately 100,000 pixels. In order to perform this test properly, it is important to have a population of homogeneous particles. A biological particle usually has heterogeneous pixel intensities that correspond to the details in the biological image and thus shows more variability as a test particle. RESULTS: The bead CV consisting of a population of pixel intensities is dependent on a number of machine variables that include frame averaging, photomultiplier tube (PMT) voltage, PMT noise, and laser power. The relationship among these variables suggests that the machine should be operated with lower PMT values in order to generate superior image quality. If this cannot be achieved, frame averaging will be necessary to reduce the CV and improve image quality. There is more image noise at higher PMT settings, making it is necessary to average more frames to reduce the CV values and improve image quality. The sensitivity of a system is related to system noise, laser light efficiency, and proper system alignment. It is possible to compare different systems for system performance and sensitivity if the laser power is maintained at a constant value. Using this bead CV test, 1 mW of 488 nm laser light measured on the scan head yielded a CV value of 4% with a Leica TCS-SP1 (75-mW argon-krypton laser) and a CV value of 1.3% with a Zeiss 510 (25-mW argon laser). A biological particle shows the same relationship between laser power, averaging, PMT voltage, and CV as do the beads. However, because the biological particle has heterogeneous pixel intensities, there is more particle variability, which does not make as useful as a test particle. CONCLUSIONS: This CV analysis of a 10-microm Spherotech fluorescent bead can help determine the sensitivity in a confocal microscope and the system performance. The relationship among the factors that influence image quality is explained from a statistical endpoint. The data obtained from this test provides a systematic method of reducing noise and increasing image clarity. Many components of a CLSM, including laser power, laser stability, PMT functionality, and alignment, influence the CV and determine if the equipment is performing properly. Preliminary results have shown that the bead CV can be used to compare different confocal microscopy systems with regard to performance and sensitivity. The test appears to be analogous to CV tests made on the flow cytometer to assess instrument performance and sensitivity. Published 2001 Wiley-Liss, Inc.  相似文献   

2.
BACKGROUND: The type of antibody-conjugated polystyrene (PS) latex beads for use as light scatter shift agents for targeted lymphocyte populations in whole blood has been expanded to include gold and silver nanoparticle-aminodextran-PS latex bead conjugates with antibodies. The linkers between antibody and colloidal metal were an aminotrithiol ligand or aminodextran polymer molecules. METHODS: A modified flow instrument, including forward light scatter (FS), side light scatter (SS), light scatter at other intermediate angle ranges, LMALS (10-20 degrees ) and UMALS (20-65 degrees ) was used for simultaneous bead probe measurements. A conventional flow cytometer was used in simultaneous bead-fluorescent marker experiments. RESULTS: Two mutually exclusive cell populations, CD4+ and CD8+ lymphocytes, have been simultaneously enumerated in blood by using a mixture of CD4-PS, CD8-Au-PS or CD4-Au-PS, CD8-PS beads, and one laser line, 633 nm, excitation. Similar measurements were made with mixtures of CD4-PS, CD8-Ag-PS or CD4-Ag-PS, CD8-PS beads. Also, simultaneous use of bead and fluorescent markers mixed with whole blood was demonstrated with CD4-PS beads and with the CD4-RD1/CD8-FITC dual marker. CONCLUSIONS: Enumeration of CD4 and CD8 lymphocytes in whole blood by light scatter parameters only compared well with standard analyses with fluorescent markers. In simultaneous bead-fluorescent marker labeling of lymphocytes, the labeled bead had to be mixed first with cells in whole blood.  相似文献   

3.

Background

The Illumina HumanMethylation450 BeadChip (HM450K) measures the DNA methylation of 485,512 CpGs in the human genome. The technology relies on hybridization of genomic fragments to probes on the chip. However, certain genomic factors may compromise the ability to measure methylation using the array such as single nucleotide polymorphisms (SNPs), small insertions and deletions (INDELs), repetitive DNA, and regions with reduced genomic complexity. Currently, there is no clear method or pipeline for determining which of the probes on the HM450K bead array should be retained for subsequent analysis in light of these issues.

Results

We comprehensively assessed the effects of SNPs, INDELs, repeats and bisulfite induced reduced genomic complexity by comparing HM450K bead array results with whole genome bisulfite sequencing. We determined which CpG probes provided accurate or noisy signals. From this, we derived a set of high-quality probes that provide unadulterated measurements of DNA methylation.

Conclusions

Our method significantly reduces the risk of false discoveries when using the HM450K bead array, while maximising the power of the array to detect methylation status genome-wide. Additionally, we demonstrate the utility of our method through extraction of biologically relevant epigenetic changes in prostate cancer.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-51) contains supplementary material, which is available to authorized users.  相似文献   

4.
BACKGROUND: Using a single-platform protocol to count absolute CD34+ hematopoietic precursor cell (HPC) levels with different reference microbeads, we recorded occasionally artifactually high CD34+ HPC counts in some leukapheresis bags, whereas dual-platform calculations were always consistent. Abnormal countings were observed only when phosphate-buffered saline (PBS)-diluted leukapheresis samples were vortexed before analysis. A large series of blood samples analyzed similarly for CD34+ and CD4+ absolute counts did not show any sample or vortexing effect. With the volumetric absolute counting cytometer Partec-PAS, lower counts were also observed when different reference beads were vortexed before the instrument checking procedures. The counting abnormality was caused by a drop in microbead concentration (the "vanishing bead phenomenon"). This phenomenon reduced the total and relative bead event number in experimental and routine samples and in calibration procedures. This altered the bead denominator used to calculate absolute CD34+ HPC levels and it also reduced the concentration of standard calibration beads. METHODS: Using the Partec-PAS to measure volumetrically the actual bead concentration, we studied the vanishing bead phenomenon. Different types of counting and reference microbeads were resuspended in media with or without proteins or cells. Replicates were submitted either to gentle manual mixing or to vortexing before counting. RESULTS: Vortex agitation almost invariably induced the vanishing bead phenomenon when beads were resuspended in saline media or when an insufficient protein concentration was present, such as in diluted leukapheresis samples. Different bead types showed various degrees of sensitivity to vortexing. The bead disappearance was not caused by bubble formation or disruption. The addition of small amounts of protein completely prevented the vanishing bead phenomenon. The causative effect of the electrostatic charging of tube induced by vortexing is hypothesized. CONCLUSIONS: Sample suspensions containing counting beads for single-platform analysis must be resuspended in media with protein supplements to prevent the vanishing bead phenomenon and to ensure accurate counting.  相似文献   

5.
A 16S rRNA-targeted tunable bead array was developed and used in a retrospective analysis of metal- and sulfate-reducing bacteria in contaminated subsurface sediments undergoing in situ U(VI) bioremediation. Total RNA was extracted from subsurface sediments and interrogated directly, without a PCR step. Bead array validation studies with total RNA derived from 24 isolates indicated that the behavior and response of the 16S rRNA-targeted oligonucleotide probes could not be predicted based on the primary nucleic acid sequence. Likewise, signal intensity (absolute or normalized) could not be used to assess the abundance of one organism (or rRNA) relative to the abundance of another organism (or rRNA). Nevertheless, the microbial community structure and dynamics through time and space and as measured by the rRNA-targeted bead array were consistent with previous data acquired at the site, where indigenous sulfate- and iron-reducing bacteria and near neighbors of Desulfotomaculum were the organisms that were most responsive to a change in injected acetate concentrations. Bead array data were best interpreted by analyzing the relative changes in the probe responses for spatially and temporally related samples and by considering only the response of one probe to itself in relation to a background (reference) environmental sample. By limiting the interpretation of the data in this manner and placing it in the context of supporting geochemical and microbiological analyses, we concluded that ecologically relevant and meaningful information can be derived from direct microarray analysis of rRNA in uncharacterized environmental samples, even with the current analytical uncertainty surrounding the behavior of individual probes on tunable bead arrays.  相似文献   

6.
The measurement of soluble cytokines and other analytes in serum and plasma is becoming increasingly important in the study and management of many diseases. As a result, there is a growing demand for rapid, precise, and cost-effective measurement of such analytes in both clinical and research laboratories. Multiplex bead array assays provide quantitative measurement of large numbers of analytes using an automated 96-well plate format. Enzyme-linked immunosorbent assay (ELISAs) have long been the standard for quantitative analysis of cytokines and other biomarkers, but are not well suited for high throughput multiplex analyses. However, prior to replacement of ELISA assays with multiplex bead array assays, there is a need to know how comparable these two methods are for quantitative analyses. A number of published studies have compared these two methods and it is apparent that certain elements of these assays, such as the clones of monoclonal antibodies used for detection and reporting, are pivotal in obtaining similar results from both assays. By careful consideration of these variables, it should be possible to utilize multiplex bead array assays in lieu of ELISAs for studies requiring high throughput analysis of numerous analytes.  相似文献   

7.
The detection and characterization of antigen-specific T cell populations is critical for understanding the development and physiology of the immune system and its responses in health and disease. We have developed and tested a method that uses arrays of peptide–MHC complexes for the rapid identification, isolation, activation, and characterization of multiple antigen-specific populations of T cells. CD4+ or CD8+ lymphocytes can be captured in accordance with their ligand specificity using an array of peptide–MHC complexes printed on a film-coated glass surface. We have characterized the specificity and sensitivity of a peptide–MHC array using labeled lymphocytes from T cell receptor transgenic mice. In addition, we were able to use the array to detect a rare population of antigen-specific T cells following vaccination of a normal mouse. This approach should be useful for epitope discovery, as well as for characterization and analysis of multiple epitope-specific T cell populations during immune responses associated with viral and bacterial infection, cancer, autoimmunity, and vaccination.  相似文献   

8.

Objective

To establish reference charts for fetal cerebellar vermis height in an unselected population.

Methods

A prospective cross-sectional study between September 2009 and December 2014 was carried out at ALTAMEDICA Fetal–Maternal Medical Centre, Rome, Italy. Of 25203 fetal biometric measurements, 12167 (48%) measurements of the cerebellar vermis were available. After excluding 1562 (12.8%) measurements, a total of 10605 (87.2%) fetuses were considered and analyzed once only. Parametric and nonparametric quantile regression models were used for the statistical analysis. In order to evaluate the robustness of the proposed reference charts regarding various distributional assumptions on the ultrasound measurements at hand, we compared the gestational age-specific reference curves we produced through the statistical methods used. Normal mean height based on parametric and nonparametric methods were defined for each week of gestation and the regression equation expressing the height of the cerebellar vermis as a function of gestational age was calculated. Finally the correlation between dimension/gestation was measured.

Results

The mean height of the cerebellar vermis was 12.7mm (SD, 1.6mm; 95% confidence interval, 12.7–12.8mm). The regression equation expressing the height of the CV as a function of the gestational age was: height (mm) = -4.85+0.78 x gestational age. The correlation between dimension/gestation was expressed by the coefficient r = 0.87.

Conclusion

This is the first prospective cross-sectional study on fetal cerebellar vermis biometry with such a large sample size reported in literature. It is a detailed statistical survey and contains new centile-based reference charts for fetal height of cerebellar vermis measurements.  相似文献   

9.
Insulin resistance is highly prevalent in Asian Indians and contributes to worldwide public health problems, including diabetes and related disorders. Surrogate measurements of insulin sensitivity/resistance are used frequently to study Asian Indians, but these are not formally validated in this population. In this study, we compared the ability of simple surrogate indices to accurately predict insulin sensitivity as determined by the reference glucose clamp method. In this cross-sectional study of Asian-Indian men (n = 70), we used a calibration model to assess the ability of simple surrogate indices for insulin sensitivity [quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment (HOMA2-IR), fasting insulin-to-glucose ratio (FIGR), and fasting insulin (FI)] to predict an insulin sensitivity index derived from the reference glucose clamp method (SI(Clamp)). Predictive accuracy was assessed by both root mean squared error (RMSE) of prediction as well as leave-one-out cross-validation-type RMSE of prediction (CVPE). QUICKI, FIGR, and FI, but not HOMA2-IR, had modest linear correlations with SI(Clamp) (QUICKI: r = 0.36; FIGR: r = -0.36; FI: r = -0.27; P < 0.05). No significant differences were noted among CVPE or RMSE from any of the surrogate indices when compared with QUICKI. Surrogate measurements of insulin sensitivity/resistance such as QUICKI, FIGR, and FI are easily obtainable in large clinical studies, but these may only be useful as secondary outcome measurements in assessing insulin sensitivity/resistance in clinical studies of Asian Indians.  相似文献   

10.
The detection and characterization of antigen-specific T cell populations is critical for understanding the development and physiology of the immune system and its responses in health and disease. We have developed and tested a method that uses arrays of peptide–MHC complexes for the rapid identification, isolation, activation, and characterization of multiple antigen-specific populations of T cells. CD4+ or CD8+ lymphocytes can be captured in accordance with their ligand specificity using an array of peptide–MHC complexes printed on a film-coated glass surface. We have characterized the specificity and sensitivity of a peptide–MHC array using labeled lymphocytes from T cell receptor transgenic mice. In addition, we were able to use the array to detect a rare population of antigen-specific T cells following vaccination of a normal mouse. This approach should be useful for epitope discovery, as well as for characterization and analysis of multiple epitope-specific T cell populations during immune responses associated with viral and bacterial infection, cancer, autoimmunity, and vaccination.  相似文献   

11.
Lalonde MS  Arts EJ 《PloS one》2010,5(11):e15476
Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture.  相似文献   

12.
Recent evidence demonstrated that conformational changes of the integrin during receptor activation affected its binding to extracellular matrix; however, experimental assessment of ligand-receptor binding following the initial molecular interaction has rarely been carried out at a single-molecule resolution. In the present study, laser tweezers were used to measure the binding force exerted by a live Chinese hamster ovary cell that expressed integrin alphaIIb beta3 (CHO alphaIIb beta3), to the bead carrier coated with the snake venom rhodostomin that served as an activated ligand for integrin alphaIIb beta3. A progressive increase of total binding force over time was noticed when the bead interacted with the CHO alphaIIb beta3 cell; such an increase was due mainly to the recruitment of more integrin molecules to the bead-cell interface. When the binding strength exerted by a single ligand-receptor pair was derived from the "polyvalent" measurements, surprisingly, a stepped decrease of the "monovalent binding force" was noted (from 4.15 to 2.54 piconewtons (pN)); such decrease appeared to occur during the ligand-induced integrin clustering process. On the other hand, the mutant rhodostomin defective in clustering integrins exhibited only one (1.81 pN) unit binding strength.  相似文献   

13.
Conjugates of nickel beads with CD8 and anti-red blood cell KC16 antibody were prepared by using the aminotrithiolate "spider" ligand, tris(3-mercaptopropyl)-N-glycylaminomethane, in its new function as a linker between the surface of nickel beads and antibody via activation of spider ligand attached to nickel beads with the common, heterobifunctional cross-linker, sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC). Raw nickel beads were cleaned by either mild sonication in a bath or by stronger probe sonication to remove surface nickel oxide layers, before attachment of the spider ligand. Scanning electron micrographs of the nickel beads before and after probe sonication showed a marked change from a corrugated to a smooth bead surface. Analyses of the supernatants of conjugation mixtures for antibody gave surface densities of 2.5-5.2 mg/m(2) for CD8 and 0.6-12 mg/m(2) for KC16 antibody runs. The antibody-spider-nickel bead conjugates were used in magnetic bead depletions of targeted CD8+ lymphocytes or red blood cells (rbcs) in whole blood of normal donors. For CD8 cell depletions, the undepleted controls and supernatants of depleted samples were analyzed for CD8/CD4 cell populations by flow cytometry with appropriate fluorescent antibody markers. Enumeration of red blood cells, white blood cells (wbcs), and platelets (plts) in undepleted controls and supernatants of depleted samples were carried out on appropriate hematology counters. Whole blood titer results with various lots of either CD8-spider-nickel or KC16-spider-nickel bead conjugates showed varying degrees of depletion ability as indicated by bead-to-cell ratios of 2-32 for CD8 beads and by rbc-to-bead ratios of 1.2-10 for KC16 beads. Moreover, varying degrees of specificity of CD8 beads for CD8+ cells over CD4+ cells and of KC16 beads for rbcs over white blood cells and platelets were observed from the normalized nontargeted cell population figures in undepleted controls versus supernatants of depleted samples.  相似文献   

14.
McMahan CS  Tebbs JM  Bilder CR 《Biometrics》2012,68(3):793-804
Summary Array-based group-testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed-form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two-dimensional array testing in a heterogeneous population. We then propose two "informative" array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per-individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.  相似文献   

15.
A 16S rRNA-targeted tunable bead array was developed and used in a retrospective analysis of metal- and sulfate-reducing bacteria in contaminated subsurface sediments undergoing in situ U(VI) bioremediation. Total RNA was extracted from subsurface sediments and interrogated directly, without a PCR step. Bead array validation studies with total RNA derived from 24 isolates indicated that the behavior and response of the 16S rRNA-targeted oligonucleotide probes could not be predicted based on the primary nucleic acid sequence. Likewise, signal intensity (absolute or normalized) could not be used to assess the abundance of one organism (or rRNA) relative to the abundance of another organism (or rRNA). Nevertheless, the microbial community structure and dynamics through time and space and as measured by the rRNA-targeted bead array were consistent with previous data acquired at the site, where indigenous sulfate- and iron-reducing bacteria and near neighbors of Desulfotomaculum were the organisms that were most responsive to a change in injected acetate concentrations. Bead array data were best interpreted by analyzing the relative changes in the probe responses for spatially and temporally related samples and by considering only the response of one probe to itself in relation to a background (reference) environmental sample. By limiting the interpretation of the data in this manner and placing it in the context of supporting geochemical and microbiological analyses, we concluded that ecologically relevant and meaningful information can be derived from direct microarray analysis of rRNA in uncharacterized environmental samples, even with the current analytical uncertainty surrounding the behavior of individual probes on tunable bead arrays.  相似文献   

16.
Higher throughput thermodynamic measurements can provide value in structure-based drug discovery during fragment screening, hit validation, and lead optimization. Enthalpy can be used to detect and characterize ligand binding, and changes that affect the interaction of protein and ligand can sometimes be detected more readily from changes in the enthalpy of binding than from the corresponding free-energy changes or from protein-ligand structures. Newer, higher throughput calorimeters are being incorporated into the drug discovery process. Improvements in titration calorimeters come from extensions of a mature technology and face limitations in scaling. Conversely, array calorimetry, an emerging technology, shows promise for substantial improvements in throughput and material utilization, but improved sensitivity is needed.  相似文献   

17.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

18.
19.
A SISCAPA (stable isotope standards and capture by anti-peptide antibodies) method for specific antibody-based capture of individual tryptic peptides from a digest of whole human plasma was developed using a simplified magnetic bead protocol and a novel rotary magnetic bead trap device. Following off-line equilibrium binding of peptides by antibodies and subsequent capture of the antibodies on magnetic beads, the bead trap permitted washing of the beads and elution of bound peptides inside a 150-μm-inner diameter capillary that forms part of a nanoflow LC-MS/MS system. The bead trap sweeps beads against the direction of liquid flow using a continuous succession of moving high magnetic field-gradient trap regions while mixing the beads with the flowing liquid. This approach prevents loss of low abundance captured peptides and allows automated processing of a series of SISCAPA reactions. Selected tryptic peptides of α1-antichymotrypsin and lipopolysaccharide-binding protein were enriched relative to a high abundance serum albumin peptide by 1,800 and 18,000-fold, respectively, as measured by multiple reaction monitoring. A large majority of the peptides that are bound nonspecifically in SISCAPA reactions were shown to bind to components other than the antibody (e.g. the magnetic beads), suggesting that substantial improvement in enrichment could be achieved by development of improved inert bead surfaces.MS is the method of choice for identification of peptides in digests of biological samples based on the power of MS to detect the chemically well defined masses of both peptides and their fragments produced by processes such as CID. This high level of structural specificity is also critical in improving peptide (and protein) quantitation because it overcomes the well known problems inherent in classical immunoassays related to limited antibody specificity, dynamic range, and multiplexability. In principle, a quantitative peptide assay using MRM1 detection in a triple quadrupole mass spectrometer should have nearly absolute structural specificity, a dynamic range of ∼1e+4, and the ability to multiplex measurements of hundreds of peptides per sample (1). These properties suggest that MS-based methods could ultimately replace classical immunoassay technologies in many research and clinical applications.An important limitation of present peptide MRM measurements is sensitivity. The most sensitive widely used quantitative MS platforms use nanoflow chromatography and ESI to deliver trace amounts of peptides to the mass spectrometer. However, these processes are limited in the total amount of peptide that can be applied while retaining maximum sensitivity (typically limited to ∼1 μg of total peptide sample, i.e. the product obtained from digesting ∼14 nl of plasma). The lower cutoff for detecting proteins in a digest of unfractionated plasma by this approach appears to be in the neighborhood of 1–20 μg/ml plasma concentration, which would restrict analysis to the top 100 or so proteins in plasma (1).The sensitivity of MS assays can be substantially increased by fractionating the sample at the level of intact proteins, the tryptic peptides derived from them, or both. For example, immunodepletion of the six most abundant plasma proteins, removes ∼85% of the protein mass (2) and results in an increase of ∼7-fold in the signal-to-noise of MRM measurements of peptides from the remaining proteins after digestion (1). Similarly chromatographic fractionation by strong cation exchange provides another major improvement in sensitivity (3). However, increased sample fractionation brings with it the disadvantages of increased cost and time, the risk of losing specific components, and the continued requirement for very high resolution (lengthy, low throughput) reversed phase nanoflow chromatography en route to the ESI source.An alternative fractionation approach, used in the SISCAPA method, enriches specific target peptides through capture by anti-peptide antibodies, thus circumventing these disadvantages for preselected targets (4). In its initial implementation, SISCAPA used very small (∼10-nl) columns of POROS chromatography support carrying covalently bound rabbit antibodies and provided ∼100-fold enrichment of target peptides with respect to others (4). These columns were, like immunoaffinity depletion columns (2), recyclable many times. However, the potential for sample-to-sample carryover, limitations in the amount of sample digest that could be pumped over nanoaffinity columns at flow rates slow enough to permit peptide binding, and limited flexibility in changing and multiplexing antibodies were problematic. This led us to explore an alternative approach using magnetic beads as the antibody support (5). In this case, the binding reaction can be carried out off line, allowing equilibrium binding; the magnetic beads can be removed from the digest sample and washed; and the bound peptides can be eluted in 96-well plates either manually or using automated equipment such as a KingFisher Magnetic Particle Processor (ThermoFisher). One potential pitfall remains in the handling of eluted peptides. If the anti-peptide antibodies have very high selectivity, as desired in the SISCAPA approach, then in the case of low abundance peptides, only a very small amount of peptide will be eluted from the antibody. Such small amounts of peptide are easily lost through irreversible binding to the walls of vessels such as 96-well plate wells, and the smaller the amount of peptide (i.e. the more specific the capture), the worse the problem may be.To address this issue, we report here a hybrid approach in which peptide binding occurs off line (to equilibrium), whereas the subsequent washing and elution steps are carried out within a capillary that forms part of the nanoflow LC system, thus ensuring that peptide eluted from the antibodies on the beads will not be “lost” between elution and the ESI source. Although there is extensive literature on macroscopic and microfluidic devices for manipulating magnetic beads (68) we were unable to find components adaptable to the small scales and high pressures required for integration into nanoflow HPLC. We therefore developed a novel “bead trap” device that satisfies the following requirements: 1) the need to retain beads in a “trap” region against the flow of liquid (loading, wash, and elution buffers for example) in a vessel of capillary dimensions, 2) the need to ensure that beads do not escape from the trap region to contaminate downstream apparatus or columns, 3) the need to ensure that beads are effectively mixed with the flowing fluids (required for efficient washing and elution), and 4) the need to ensure that all beads can be efficiently ejected from the trap region in preparation for a subsequent cycle. The device provides multiple sequential magnetic trapping regions capable of sweeping commonly used 2.8- and 1-μm magnetic beads against liquid flow to prevent escape of beads through the trapping device (i.e. the second downstream trapping zone captures beads swept by the liquid stream past the first trap and so on). In addition, the bead trap device allows the movement of these trapping regions to agitate the trapped bead mass and mix it with fluids flowing past. Finally the device allows reversal of the sweeping action to effectively eject beads from the trap into the fluid stream. The bead trap capillary can be plumbed at various points in conventional nanoflow LC systems (e.g. in place of a sample loop or connecting tube), and the device can be controlled directly by the LC-MS/MS instrument software through contact closures. We show that the bead trap provides an effective method of implementing SISCAPA experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号