首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactobacillus amylophilus strain GV6, isolated from corn starch processing industrial wastes, was amylolytic and produced 0.96?g L(+) lactic acid per gram of soluble starch. The optimum temperature and pH for growth and L(+) lactic acid production were 37?°C and 6.5, respectively. At low substrate concentrations, the lactic acid production on corn starch was almost similar to soluble starch. The strain is fermenting various naturally available starches directly to lactic acid. The total amylase activity of the strain is 0.59?U/ml/min. The strain produced 49 and 76.2?g/l L(+) lactic acid from 60?g/l corn starch and 90?g/l soluble starch, respectively. This is the highest L(+) lactic acid among the wild strains of L. amylophilus reported so far.  相似文献   

2.
Lactobacillus amylophilus GV6 fermented a variety of pure and natural starches directly to L(+) lactic acid. Starch to lactic acid conversion efficiency was more than 90% by strain GV6 at low substrate concentrations with all starches. The strain GV6 produced high yields of lactic acid per g of substrate utilized with pure starches such as soluble starch, corn starch, and potato starch, yielding 92–96% at low substrate concentrations in 2 days and 78–89% at high substrate (10%) concentrations in 4–6 days. Strain GV6 also produced high yields of lactic acid per g of substrate utilized with crude starchy substrates such as wheat flour, sorghum flour, cassava flour, rice flour and barley flour yielding 90–93% at low substrate concentrations in 2 days and 80% or more at high substrate concentrations in 6–7 days. Lactic acid yields by L. amylophilus GV6 with pure starches were comparable when low cost crude starchy substrates were used. Lactic acid productivity by strain GV6 is higher than for any other previously reported strains of L. amylophilus.  相似文献   

3.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

4.
L(+) Lactic acid fermentation was studied by Lactobacillus amylophilus GV6 under the influence of inexpensive nitrogen sources (red lentil-RL, and Baker's yeast cells-YC) and starch by response surface methodology (RSM). Central composite rotatable design (CCRD) was employed to determine maximum lactic acid production at optimum values for process variables RL, YC and incubation period (IP) and a satisfactory fit model was realized. Lactic acid production was significantly affected by RL and IP interactions as well as by independent variables RL and YC. Maximum lactic acid production of 13.5 g/15.2g starch was obtained with RL 0.8%, YC 1% and IP of 48 h, with 92% lactic acid yield efficiency (g lactic acid produced/g substrate utilized) and 40% increase (from 50 g to 92 g/100 g starch utilized) in lactic acid production. This is the first report on response optimization in direct fermentation of starch to lactic acid using inexpensive nitrogen sources substituting peptone and yeast extract in anaerobic submerged fermentation by amylolytic lactic acid bacteria (LAB).  相似文献   

5.
Of six strains of lactic acid-producing alkaliphilic microorganisms, Halolactibacillus halophilus was most efficient. It produced the highest concentration and yield of lactic acid, with minimal amounts of acetic and formic acid when sucrose and glucose were used as substrate. Mannose and xylose were poorly utilized. In batch fermentation at 30°C, pH 9 with 4 and 8% (w/v) sucrose, lactic acid was produced at 37.7 and 65.8 g l−1, with yields of 95 and 83%, respectively. Likewise, when 4 and 8% (w/v) glucose were used, 33.4 and 59.6 g lactic acid l−1 were produced with 85 and 76% yields, respectively. l-(+)-lactic acid had an optical purity of 98.8% (from sucrose) and 98.3% (from glucose).  相似文献   

6.
AIMS: Development of cost-effective production medium by applying statistical designs for single-step fermentation of starch (corn flour - CF) to L-(+) lactic acid, using inexpensive nitrogen sources as substitutes for peptone and yeast extract in MRS medium by amylolytic Lactobacillus amylophilus GV6. METHODS AND RESULTS: A two-level Plackett-Burman design was employed for screening various available crude starches (flours) for L-(+) lactic acid production by Lact. amylophilus GV6 using red lentil flour (RL) and bakers yeast cells (YC) as substitutes for commercial peptone and yeast extract in MRS medium in anaerobic submerged fermentation. Of all the tested flours, CF was found to be the most significant. Central composite rotatable design was employed to determine maximum production of L-(+) lactic acid at optimum values of process variables, CF, RL, YC, CaCO(3) and incubation period (IP). minitab analyses showed that lactic acid production was significantly affected by the linear terms CF, RL, CaCO(3) and IP. The interactions of CF-RL, CF-YC, CF-CaCO(3), RL-YC and RL-CaCO(3) and the square terms CF and IP were significant. The maximum lactic acid production of 29 g/37 g of starch present in 50 g of CF was obtained at optimized concentrations of CF 5%, RL 0.7%, YC 0.8%, CaCO(3) 0.8% and IP 2.9 days. CONCLUSIONS: Successful application of Plackett-Burman design helped in identifying CF as the best carbon source among the tested flours for L-(+) lactic acid production using inexpensive nitrogen sources. Further optimization of the process variables by response surface methods (RSMs) led to maximum production of lactic acid (29 g lactic acid from 37 g of starch present in 50 g of flour). SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus amylophilus GV6 showed 78.4% lactic acid production efficiency (g lactic acid produced/g starch taken) and 96% lactic acid yield efficiency (g lactic acid produced/g starch utilized). Information from the present studies provides a better understanding on production of L-(+) lactic acid on fermentation of CF using inexpensive nitrogen sources and on changes in the production as a response from interaction of factors. Use of inexpensive nitrogen sources and starch as substrate in MRS medium for single-step fermentation of lactic acid can become an efficient, economic and viable process. This report is on optimization of inexpensive nitrogen sources completely replacing peptone and yeast extract in single-step submerged fermentation of starch (present in CF) to lactic acid with high production efficiency.  相似文献   

7.
Five lactic acid bacteria capable of carrying out the malolactic fermentation were studied at 15°C and 25°C. Results indicated that at 15°C hardly any glucose, fructose and l -malic acid was utilized over a 9d period. After 9d at 25°C very little glucose and fructose and most (if not all) of the l -malic acid was degraded. The addition of ethanol markedly affected the l -malic acid utilization by the four Leuconostoc oenos strains at 25°C. Large differences in their ability to convert l -malic acid were found amongst the four strains in media containing 5% and 10%(v/v) ethanol.  相似文献   

8.
发酵初期在米根霉菌发酵培养基中添加L-乳酸可以调控发酵产物乳酸的光学纯度。随着L-乳酸添加量的增加,所产L-乳酸的光学纯度随之增加,当L-乳酸的添加量≥1.5g/L时,D-乳酸不再产生。同时,L-乳酸的产量、生物量、糖转化率也随之降低。该调控方法对乳酸菌调控产L-乳酸光学纯度影响不大,对大肠杆菌发酵调控产D-乳酸光学纯度没有效果。  相似文献   

9.
Summary The kinetics of fermenting barley, cassava, corn, oats, and rice directly to L(+) lactic acid byRhizopus oryzae NRRL 395 were determined. The rates of carbohydrate consumption and L(+) lactic acid production were found to be influenced by the type of substrate, the substrate concentration, the fermentation temperature, and the presence of a neutralizing agent.  相似文献   

10.
Expression of D-(-)-lactate dehydrogenase (D-LDH) and L-(+)-LDH genes (ldhD and ldhL, respectively) and production of D-(-)- and L-(+)-lactic acid were studied in Lactobacillus helveticus CNRZ32. In order to develop a host for production of pure L-(+)-isomer of lactic acid, two ldhD-negative L. helveticus CNRZ32 strains were constructed using gene replacement. One of the strains was constructed by deleting the promoter region of the ldhD gene, and the other was constructed by replacing the structural gene of ldhD with an additional copy of the structural gene (ldhL) of L-LDH of the same species. The resulting strains were designated GRL86 and GRL89, respectively. In strain GRL89, the second copy of the ldhL structural gene was expressed under the ldhD promoter. The two D-LDH-negative strains produced only L-(+)-lactic acid in an amount equal to the total lactate produced by the wild type. The maximum L-LDH activity was found to be 53 and 93% higher in GRL86 and GRL89, respectively, than in the wild-type strain. Furthermore, process variables for L-(+)-lactic acid production by GRL89 were optimized using statistical experimental design and response surface methodology. The temperature and pH optima were 41 degrees C and pH 5.9. At low pH, when the growth and lactic acid production are uncoupled, strain GRL89 produced approximately 20% more lactic acid than GRL86.  相似文献   

11.
In order to improve the purity of lactic acid isomers, the effects of pH, temperature, fermentation time and their interactions on l(+) or d(-)-lactic acid production were evaluated during lactic acid fermentation of the non-sterile kitchen wastes. The results showed that l(+)-lactic acid was the main isomeric form. The isomer purity was much higher at acidic or alkalic pH (non-controlled pH, pH 5 and pH 8) than neutral pH (pH 6 and pH 7). Increasing the fermentation temperature from 35 degrees C to 45 degrees C at pH 7 enhanced the isomer purity from 60:40 to 83:17. The optimal fermentation time for the purity of lactic acid isomers was found to depend on the corresponding pH and temperature. From the response surface analysis, the optimized combination of pH and temperature could obviously increase the l(+)-isomer concentration. It is confirmed that the variation of the isomer purity with pH, temperature and fermentation time change resulted from the substitution of microbial community composition. The lactic acid bacteria and Clostridium sp. dominated the fermentation of non-sterile kitchen wastes, and the emergence and disappearance of lactic acid bacteria which produced l(+)-isomer and Clostridium sp. resulted in the variations of the isomer purity.  相似文献   

12.
Salt whey permeate was used as a substrate for lactic acid production by different strains of homofermentative lactobacilli. An isolate from Egyptian Cheddar cheese proved to be the most effective lactic acid producer. The salt whey permeate was optimized by addition of yeast extract and minerals to enable exponential growth of organisms. The lactic acid productivity of free and immobilized cells was compared and fermentation conditions were improved. Continuous lactic acid fermentation from salt whey permeate with cells immobilized in agarose beads was successfully carried out in a chemostat with a steady lactic acid concentration of 33.4 mg/ml.  相似文献   

13.
The effect of the conjugated bile acid (BA) on the microbial internal pH (pHin) values in lactic acid bacteria with and without ability to hydrolyze bile salts (BSH[+] and BSH[-] strains, respectively) was evaluated. BSH(+) strains showed a gradual increase in the pHin following the addition of conjugated BA; this behavior was more pronounced with GDCA than with TDCA may be due to the higher affinity of BSH for the glyco-conjugates acids. Conversely, the BSH(-) strains showed a decrease in internal pH probably as a consequence of weak acid accumulation. As expected, a decrease in the cytoplasmatic pH affected the cell survival in this last group of strains, while the BSH(+) strains were more resistant to the toxic effect of BA. PURPOSE OF WORK: To evaluate bile salt hydrolase activities, changes in the internal pH and cell survival to bile acids in lactic acid bacteria to establish the relationship between these parameters.  相似文献   

14.
L(+)-lactic acid production was investigated using an enzymatic hydrolysate of waste office automation (OA) paper in a culture of the filamentous fungus Rhizopus oryzae. In 4 d culture, 82.8 g/l glucose, 7 g/l xylose, and 3.4 g/l cellobiose contained in the hydrolysate were consumed to produce 49.1 g/l of lactic acid. The lactic acid yield and production rate were only 0.59 g/g and 16.3 g/l/d, respectively, only 75% and 61% of the results from the glucose medium. The low production rate from waste OA hydrolysate was elucidated by trials using xylose as the sole carbon source; in those trials, the lactic acid production rate was 7.3 g/l/d, only 28% that of glucose or cellobiose. The low lactic acid yield from waste OA hydrolysate was clarified by trials using artificial hydrolysates comprised of 7:2:1 or 7:1:2 ratios of glucose:cellobiose:xylose. For both, the lactic acid production rate of 17.4 g/l/d matched that of waste OA paper, while the lactic acid yield was similar to that of the glucose medium. This indicates that the production rate may be inhibited by xylose derived from hemicellulose, and the yield may be inhibited by unknown compounds derived from paper pulp.  相似文献   

15.
Acholeplasma laidlawii A possesses a nicotinamide adenine dinucleotide (NAD)-dependent l(+)-lactate dehydrogenase (LDH) which is activated specifically by low concentrations of fructose-1, 6-diphosphate (FDP). Studies with partially purified enzyme show that the kinetic response to FDP is hyperbolic. The enzyme is inhibited by inorganic phosphate, adenosine triphosphate, and high concentrations of reduced NAD (NADH). Low activity is demonstrable in the absence of FDP at pH 6.0 to 7.2, but FDP is absolutely required in the region of pH 8. FDP causes an upward shift in the optimum pH of the enzyme, which is near 7.2 in tris (hydroxymethyl)aminomethane buffer. Activation of the enzyme by FDP is markedly affected by substrate concentration; FDP lowers the apparent K(m) for pyruvate and NADH. The affinity of the enzyme for pyruvate is also influenced by H(+) concentration. The pyruvate analogue alpha-ketobutyrate serves as an effective substrate for the enzyme; when it is utilized, the enzyme is still activated by FDP. Reversal of the pyruvate reduction reaction catalyzed by the enzyme can be demonstrated with the 3-acetylpyridine analogue of NAD. The catalytic properties of the A. laidlawii enzyme and the known FDP-activated LDHs which occur among lactic acid bacteria are discussed.  相似文献   

16.
Production of lactic acid from date juice by fermentation has been studied using Lactobacillus casei subsp. rhamnosus as the producer organism. The optimum substrate concentration, expressed in its glucose content, was 60 g l(-1). Various nitrogen sources were compared with yeast extract in terms of their efficiency for lactic acid production. None of these nitrogen sources gave lactic acid concentrations as high as that obtained with yeast extract. As yeast extract supplementation was not economically attractive, different proportions of (NH4)2SO4 and yeast extract were used. When the elemental nitrogen ratio of(NH4)2SO4 to yeast extract was 4:1, the substrate use and efficiency of lactic acid production were the same as in date juice supplemented with 20 g l(-1) yeast extract (0:5).  相似文献   

17.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

18.
A method was developed for the detection and isolation, within a population of lactic acid bacteria, of strains producing exclusively the l-(+)- isomer of lactic acid; the visual detection of colonies of these particular strains can be carried out directly on agar plates (50 to 70 colonies per plate). The method is based on an enzymatic stereospecific reaction involving d-(-)-lactate dehydrogenase and linked to a staining reaction; the diffusion area of the d-(-)- isomer stains red around the d-(-)- and the dl-lactic acid-producing colonies, while the colonies producing exclusively l-(+)-lactic acid are detected by the absence of the colored halo. The intensity of staining was increased when cellulose powder and Tween 20 were added to the agar medium.  相似文献   

19.
Fishmeal wastewater, a seafood processing waste, was utilized for production of lactic acid and fungal biomass by Rhizopus oryzae AS 3.254 with the addition of sugars. The 30 g/l exogenous glucose in fishmeal wastewater was superior to starch in view of productivities of lactic acid and fungal biomass, and COD reduction. Fishmeal wastewater can be a replacement for peptone which was the most suitable nitrogen source for lactic acid production among the tested organic or inorganic nitrogen sources. Exogenous NaCl (12 g/l) completely inhibited the production of lactic acid and fungal growth. In the medium of COD 5,000 mg/l fishmeal wastewater with the addition of 30 g/l glucose, the maximum productivity of lactic acid was 0.723 g/l h corresponding to productivity of fungal biomass 0.0925 g/l h, COD reduction 84.9% and total nitrogen removal 50.3% at a fermentation time of 30 h.  相似文献   

20.
This study describes several essential factors for direct and effective lactic acid production from food wastes by Lactobacillus manihotivorans LMG18011, and optimum conditions for simultaneous saccharification and fermentation using soluble starch and food wastes as substrates. The productivity was found to be affected by three factors: (1) initial pH, which influenced amylase production for saccharification of starch, (2) culture pH control which influenced selective production of L(+)-lactic acid, and (3) manganese concentration in medium which improved in production rate and yield of lactic acid. The optimum initial pH was 5.0-5.5, and the fermentation pH for the direct and effective fermentation from starchy substrate was 5.0 based on the yield of L(+)-lactic acid. Under these conditions, 19.5 g L(+)-lactic acid was produced from 200 g food wastes by L. manihotivorans LMG18011. Furthermore, the addition of manganese stimulated the direct fermentation significantly, and enabled complete bioconversion within 100 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号