首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
AIMS: To purify and characterize the (R)-specific carbonyl reductase from Candida parapsilosis; to compare the enzyme with other stereospecific oxidoreductases; and to develop an available procedure producing optically active (R)-1-phenyl-1,2-ethanediol (PED). METHODS AND RESULTS: An (R)-specific carbonyl reductase was found and purified from C. parapsilosis through four steps, including blue-sepharose affinity chromatography. The relative molecular mass of the enzyme was estimated to be 35 kDa on gel-filtration chromatography and 37.5 kDa on Sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme catalysed the reduction of various ketones, including alkyl and aromatic ketones, and was specific to short-chain and medium-chain alkyl ketones. The enzyme activity was inhibited by divalent ion of CuSO(4) and FeSO(4), whereas zincum ion stimulated its activity. For catalysing reduction, the enzyme performed maximum activity at pH 6.0 and the optimum temperature was 45 degrees C. The carbonyl reductase catalysed asymmetric reduction of beta-hydroxyacetophenone to the corresponding (R)-PED with the optical purity of 100% enantiomeric excess (e.e.). By analysing its partial amino acid sequences, the enzyme was proposed to be a novel stereospecific carbonyl reductase. CONCLUSIONS: The purified carbonyl reductase showed unusual stereospecificity and catalysed the NADH-dependent reduction of beta-hydroxyacetophenone to (R)-PED. The enzyme was different from other stereoselective oxidoreductases in catalytic properties. SIGNIFICANCE AND IMPACT OF THE STUDY: The discovery of (R)-specific oxidoreductase exhibiting unusual stereospecificity towards hydroxyl ketone is valuable for the synthesis of both enantiomers of useful chiral alcohols, and provides research basis for the achievement of profound knowledge on the relationship between structure and catalytic function of (R)-specific enzymes, which is meaningful for the alteration of stereospecificity by molecular methods to obtain the enzymes with desired stereospecificity.  相似文献   

2.
It has been demonstrated that esters (RO)2P(O)X and RO(R1)P(O)X where R and R1-alkyls, X-CF3 or C2F5, irreversibly inhibited cholinesterases. Their inhibitory effect increased with the elongation of alkyl radicals from CH3- to C4H9-, being more evident with respect to butyrylcholinesterase from horse serum than to acetylcholinesterase from human erythrocytes. It is shown that the concept on inability of esters of thiophosphoric acids to inhibit cholinesterases due to the fact that thionic sulphur (P-S) does not form a strong hydrogen bonds, cannot be applied to esters of perfluorothiophosphonic acids: (C2H5O)2P(S)CF3 inhibits cholinesterases more efficiently than (C2H5O)2P(O)CF3. One of the fluoric atoms probably forms hydrogen bond with the corresponding site of the active centre in cholinesterases, similar to phosphorylic oxygen (P-O) in case of the enzyme inhibition by esters of phosphoric acids.  相似文献   

3.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3-C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl(2)2, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl(2)4, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 microM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 1-4, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   

4.
【目的】通过 (R) - 和(S) -羰基还原酶在大肠杆菌中偶联,实现了一步法制备(S)-苯乙二醇的生物转化过程。【方法】将来源于近平滑假丝酵母(Candida parapsilosis CCTCC M203011)的(R)- 羰基还原酶基因(rcr)和(S) -羰基还原酶基因(scr)串联于共表达载体pETDuetTM-1上。重组质粒pETDuet-rcr-scr转化稀有密码子优化型菌株Escherichia coli Rosetta,获得酶偶联重组菌株E. coli Rosetta / pETDuet-rcr-scr。当重组菌体培养至OD600 0.6-0.8时,添加终浓度1 mmol/L IPTG,30℃诱导蛋白表达10 h。【结果】SDS-PAGE结果表明(R)- 和(S) -羰基还原酶均明显表达,它们的相对分子质量分别为37 kDa和30 kDa。重组菌生物转化结果表明:在pH7.0的磷酸缓冲液中,添加5 mmol/L Zn2+时,获得产物(S)-苯乙二醇,产物光学纯度为91.3% e.e.,产率为75.9%。【讨论】采用分子重组技术成功整合了两种氧化还原酶的催化功能,实现了(S)- 苯乙二醇的一步法转化,为简化手性醇制备途径提供了一条崭新的思路。  相似文献   

5.
We prepared a series of novel dipeptide amides of the formula Boc-Phe-Leu-X, where X is a 3-amino-3-alkyl-1,2-propanediol with lower alkyl substitutions at C-1, in order to probe accessory binding sites in the enzyme renin. This approach was successful in generating potent inhibitors of human and hog renin in vitro. Moreover, these inhibitors were able to effect in vivo reduction of plasma renin activity (PRA) in the conscious salt-depleted rhesus monkey (i.v. route); this effect was related to the size of the C-1 alkyl group.  相似文献   

6.
The t-butyldimethylsilyl derivatives of 1,2-diakyl, 1-alk-1'-enyl-2-acyl, 1-alkyl-2-acyl and 1,2-diacyl glycerols were analysed with a gas chromatograph mass spectrometer system. The characteristic fragment ions were as follows. The molecular weight determining ion was [M-57]+, which was formed by cleavage of the t-butyl radical from the molecular ion. The nature of the alk-1'-enyl residue could be determined by the presence of ions at [RCH-CH 56]+ and [RCH = CH + 130]+ (RCH = CH = alk-1'-enyl), and the alkyl residue by the ion at [R + 130]+(R = alkyl group). Ions giving information about the acyl group, [RCO]+, [RCO + 74]+ and [M-RCH = CHO, -RO or -RCOO]+ were also observed. The mass spectra of pairs of trimethylsilyl and t-butyldimethylsilyl derivatives showed differences in several respects. The t-butyldimethylsilyl derivatives gave more effective information for elucidating the structure of phosphoglycerides.  相似文献   

7.
Two cytosolic NADPH-dependent carbonyl reductases from Gluconobacter oxydans 621H, Gox0644 and Gox1615, were heterologously produced in Escherichia coli. The recombinant proteins were purified to homogeneity and characterized. Gox0644 and Gox1615 were dimers with native molecular masses of 66.1 and 74.5 kDa, respectively. The enzymes displayed broad substrate specificities and reduced α-ketocarbonyls at the keto moiety most proximal to the terminus of the alkyl chain to produce alpha-hydroxy carbonyls, as demonstrated by NMR. With respect to stereoselectivity, protein Gox0644 specifically reduced 2,3-pentanedione to 2R-hydroxy-pentane-3-one, whereas Gox1615 produced 2S-hydroxy-pentane-3-one. Both enzymes also reduced 1-phenyl-1,2-propanedione to 2-hydroxy-1-phenylpropane-1-one, which is a key intermediate in the production of numerous pharmaceuticals, such as antifungal azoles and antidepressants. Gox0644 displayed highest activities with 2,3-diones, α-ketoaldehydes, α-keto esters, and 2,5-diketogluconate. Gox1615 was less active with these substrates, but displayed a broader substrate spectrum reducing a variety of α-diketones and aldehydes.  相似文献   

8.
L Kragie 《Life sciences》1992,51(9):PL83-PL88
Previously, we reported potent inhibition of triiodo-L-thyronine (T3) cellular uptake into a human liver cell line (HepG2) by central and peripheral receptor specific benzodiazepine (BZ) compounds and our working hypothesis of BZ's as direct competitors for the iodothyronine transporter, displacing T3 but not acting as a substrate for transport. In this report, we list other reported uptake inhibitors and compare them to 23 benzodiazepine receptor ligands, in their potency to inhibit cellular uptake of T3. The most potent inhibitors are restricted to the benzodiazepine class. From the BZ structure-activity relationship (SAR) for inhibition, we see that the nonfused phenyl ring may be essential for activity and the strongest relationship is seen with substitution at R2' where Cl greater than F greater than H. Substitution at R4' and hydroxyl substitution at R3 enhances potency as will alkyl groups at R1 or on the imidazole group in the 1,2-annelated series. With R7 substitution, Cl is preferred over NO2 but not necessarily H when R4' = Cl; this may reflect a slightly different orientation of the molecule with large aliphatic R1 groups and/or R4' substitution. The carbonyl at R2 in the 1,4 benzodiazepine series, enhances their potency. The resultant structure-activity relationship highlights the importance of the halogen-substituted nonfused phenyl ring and seems unique relative to other described benzodiazepine sites and/or effects.  相似文献   

9.
【目的】从近平滑假丝酵母(Candida parapsilosis CCTCC M203011)基因组中钓取新型(S)-羰基还原酶基因(scrⅡ),对其生物转化手性醇的功能进行了验证。【方法】采用PCR的方法,从C.parapsilosis基因组中扩增出一段可能的羰基还原酶基因scrⅡ。以构建的重组菌Escherichia coli BL21/pET28a-scrⅡ为生物催化剂,2-羟基苯乙酮为底物进行催化反应,经HPLC分析,计算终产物的光学纯度和产率,确定了转化反应的最适温度和pH值。【结果】scrⅡ基因全长为840bp,编码279个氨基酸,与已报道的(S)-羰基还原酶基因scr的一致性为85%。氨基酸序列分析表明SCRⅡ具有典型短链醇脱氢酶的功能域:辅酶结合区域Thr40-Gly41-(X)3-Gly45-X-Gly47和催化三联体结构Ser172-(X)n-Tyr187-(X)3-Lys191。在30℃,0.1mmol/LIPTG的诱导下,(S)-羰基还原酶(SCRⅡ)在E.coli中过量表达。以10%(w/v)的重组菌为催化剂,高浓度(6g/L)2-羟基苯乙酮为底物,在最适反应温度35℃和pH5.5的条件下,转化产物(S)-苯基乙二醇的光学纯度高达99.1%e.e.,产率为89.6%。与(S)-羰基还原酶SCR相比较,底物浓度提高了一倍,产物的光学纯度和产率分别提高了10%和28%。【结论】采用分子克隆技术分离出新型羰基还原酶SCRⅡ的编码基因,该酶的发现为手性醇的高效制备奠定了坚实的研究基础。  相似文献   

10.
Reported previously by our group, one-pot cycloaddition using naphthoquinone, sodium azide and alkyl halides can lead to the formation of both 1-alkyl-1H- and 2-alkyl-2H-naphtho[2,3-d]triazole-4,9-diones. Herein, the effect of leaving group and additive in dictating the selectivity between the formation of 1-alkyl-1H- and 2-alkyl-2H-naphtho[2,3-d]triazole-4,9-diones has been further investigated. In the process of investigating the factors that control the selectivity and the biological activity associated with these two compounds, a novel class of antibacterial cationic anthraquinone analogs has been developed. Although these compounds are structurally similar, different antibacterial profiles are noted. One lead compound, 4e manifests high potency (MIC < 1 ??g/mL) and selectivity against Gram positive (G+) pathogens including methicillin-resistant Staphylococcus aureus (MRSA) while exerting only modest activity against Gram negative (G−) bacteria. Other lead compounds (4f and 4g) exhibit broad antibacterial activity including MRSA and vancomycin-resistant Enterococcus faecalis (VRE) that is comparable to other commercially available cationic antiseptic chemicals. This unique difference in antibacterial profile may pave the way for the development of new therapeutic agents.  相似文献   

11.
Soluble epoxide hydrolase (EH) from the potato Solanum tuberosum and an evolved EH of the bacterium Agrobacterium radiobacter AD1, EchA-I219F, were purified for the enantioconvergent hydrolysis of racemic styrene oxide into the single product (R)-1-phenyl-1,2-ethanediol, which is an important intermediate for pharmaceuticals. EchA-I219F has enhanced enantioselectivity (enantiomeric ratio of 91 based on products) for converting (R)-styrene oxide to (R)-1-phenyl-1,2-ethanediol (2.0 +/- 0.2 micromol/min/mg), and the potato EH converts (S)-styrene oxide primarily to the same enantiomer, (R)-1-phenyl-1,2-ethanediol (22 +/- 1 micromol/min/mg), with an enantiomeric ratio of 40 +/- 17 (based on substrates). By mixing these two purified enzymes, inexpensive racemic styrene oxide (5 mM) was converted at 100% yield to 98% enantiomeric excess (R)-1-phenyl-1,2-ethanediol at 4.7 +/- 0.7 micromol/min/mg. Hence, at least 99% of substrate is converted into a single stereospecific product at a rapid rate.  相似文献   

12.
Factors have been investigated which govern the electrophilic reactivity of alkyl halides with thiolate anions in aqueous solution. In the series of alkyl halides studied, some are potential metal-directed affinity labels, while others are frequently used in protein modification. Previous data on the kinetics of this type of alkylation are compared with the present results. The influence of electronic, polar, and steric factors on alkyl halide reactivity is seen. The following order of reactivity for alkyl halides bearing different α substituents was observed: RCH2CH(X)COOCH3 > RCH2CH(X)CONH2 > RCH2CH(X)COOH > RCH2CH2X > RCH2CH(X)CH2OH. The metal-directed affinity labels are imidazole derivatives, some of which have substituents in their imidazole ring. The effect of the imidazole ring and of ring substitution on reactivity is seen. The nucleophilic reactivity of thiols is highly pH dependent since the thiolate anion (RS?) is the reactive species, but only minor differences emerged between different free thiolates.  相似文献   

13.
Several nonylphenol isomers with alpha-quaternary carbon atoms serve as growth substrates for Sphingomonas xenophaga Bayram, whereas isomers containing hydrogen atoms at the alpha-carbon do not. Three metabolites of 4-(1-methyloctyl)-phenol were isolated in mg quantities from cultures of strain Bayram supplemented with the growth substrate isomer 4-(1-ethyl-1,4-dimethyl-pentyl)-phenol. They were unequivocally identified as 4-hydroxy-4-(1-methyl-octyl)-cyclohexa-2,5-dienone, 4-hydroxy-4-(1-methyl-octyl)-cyclohex-2-enone, and 2-(1-methyl-octyl)-benzene-1,4-diol by high pressure liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, two metabolites originating from 4-n-nonylphenol were identified as 4-hydroxy-4-nonyl-cyclohexa-2,5-dienone and 4-hydroxy-4-nonyl-cyclohex-2-enone by high pressure liquid chromatography-mass spectrometry. We conclude that nonylphenols were initially hydroxylated at the ipso-position forming 4-alkyl-4-hydroxy-cyclohexa-2,5-dienones. Dienones originating from growth substrate nonylphenol isomers underwent a rearrangement that involved a 1,2-C,O shift of the alkyl moiety as a cation to the oxygen atom of the geminal hydroxy group yielding 4-alkoxyphenols, from which the alkyl moieties can be easily detached as alcohols by known mechanisms. Dienones originating from nongrowth substrates did not undergo such a rearrangement because the missing alkyl substituents at the alpha-carbon atom prevented stabilization of the putative alpha-carbocation. Instead they accumulated and subsequently underwent side reactions, such as 1,2-C,C shifts and dihydrogenations. The ipso-hydroxylation and the proposed 1,2-C,O shift constitute key steps in a novel pathway that enables bacteria to detach alpha-branched alkyl moieties of alkylphenols for utilization of the aromatic part as a carbon and energy source.  相似文献   

14.
The affinities of Mg(2+) for various substituted carbonyl ligands were determined at the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) levels of theory. Two sets of carbonyl ligands were studied: monosubstituted [aldehydes R-CHO and RPh-CHO] and homodisubstituted [ketones R(2)C=O and (RPh)(2)C=O], where R = NH(2), OCH(3), OH, CH(3), H, F, Cl, Br, CN, or NO(2)). In the (RPh)(2)CO case, the R group was bonded to the para position of a phenyl ring. The enthalpies of interaction between the ligands and a pentaaquomagnesium(II) complex were calculated to determine the affinity of each ligand for the Mg(2+) cation and to correlate with geometrical and electronic parameters. These parameters exhibited the same trends for all of the ligands studied, showing that the affinity of Mg(2+) for electron-donating ligands is higher than its affinity for electron-withdrawing ligands. In the complexes, electron-donating groups increase both the electrostatic and the covalent components of the Mg-ligand interaction. This behavior correlates with the Mg-O(carbonyl) distance and the ligand electron-donor strength.  相似文献   

15.
Thyrotropin-releasing hormone (TRH) analogues in which the N(1)-position of the imidazole ring of the centrally placed histidine residue is substituted with various alkyl groups were synthesized and studied as agonists for TRH receptor subtype 1 (TRH-R1) and subtype 2 (TRH-R2). Analogue 3 (R=C2H5) exhibited binding affinity (Ki) of 0.012 microM to TRH-R1 that is about 1.1-fold higher than that of TRH. Several analogues were found to selectively activate TRH-R2 with greater potency than TRH-R1. The most selective agonist of the series 5 [R=CH(CH3)2] was found to activate TRH-R2 with a potency (EC50) of 0.018 microM but could only activate TRH-R1 at EC50 value of 1.6 microM; that is, exhibited 88-fold greater potency for TRH-R2 versus TRH-R1. The results of this study indicate that modulation of central histidine residue is important for designing analogues which were selective agonist at TRH receptor subtypes.  相似文献   

16.
Abstract

Class I major histocompatibility complex (MHC) molecules bind peptides derived from intra-cellular proteins and present them to cytotoxic T cells. Certain human immunological diseases are associated with errors in this process. Here we describe an approach to the design of non-natural peptides that could potentially interfere with peptide presentation associated with autoimmune diseases. We have shown previously that the interaction of the peptide GILGFVFTL with the MHC molecule HLA-A2 is mediated by a network of water molecules. In principle, the addition of hydroxyl groups to the peptide could allow for an enhanced interaction of the modified peptide with this water network. Here we illustrate this approach using a peptide having the non-natural amino acid homoserine at position 3, GIhSGFVFTL, and also peptides in which the Cα(F5)—CO—NH1—Cα(V6) peptide bond is replaced by an ether. Cα(F5)—CH(X)—O—Cα(V6), to give the non-natural peptide GILGF—CH(X)—O—VFTL, where X = CH2OH or CH3. In a 200 ps solvated molecular dynamics simulation of the HLA-A2 complexes of each peptide for GIhSGFVFTL and GILGF—CH(CH2OH)—O—VFTL the peptide conformation remained essentially unchanged from that of GILGFVFTL in the X-ray structure of its complex with HLA-A2. In contrast, for GILGF—CH(CH3)—O—VFTL the peptide conformation deviated from the X-ray conformation, indicating the importance of the hydroxyl group.  相似文献   

17.
A series of 4-alkylamino-2-ethoxycyclobut-3en-1,2-diones has been synthesized, characterized and their inhibitory effect on pancreatic lipase (PL) was evaluated. The compound 1 has shown relatively high potency (IC(50)?=?0.11?mM) compared with the most effective anti-obesity drug, tetrahydrolipstatin (Orlistat) (IC(50) value?=?0.08?mM). The compounds have showed good selectivity toward PL and did not affect the activity of trypsin, another digestive enzyme.  相似文献   

18.
The ethanolamine glycerophosphatides (EGP) were isolated from rat mucosal lipids by column and thin-layer chromatography and were found to contain alkyl acyl EGP. After hydrolysis and acetylation, the resulting alkyl diacetyl glycerols were separated by gas-liquid chromatography and the paraffinic moieties were shown to consist of C18- and C20-saturated and C18-monounsaturated residues. The fatty acid compositions of the 1,2-diacyl glycerols and 1-alkyl-2 acyl glycerols obtained by treatment of the phosphatides with phospholipase C were determined. The 1-alkyl 2-acyl glycerols were rich in polyunsaturated acyl residues.  相似文献   

19.
The effect of phospholipid liposomes and surfactant micelles on the rate of nitric oxide release from zwitterionic diazeniumdiolates, R1R2N[N(O)NO]-, with significant hydrophobic structure, has been explored. The acid-catalyzed dissociation of NO has been examined in phosphate-buffered solutions of sodium dodecylsulfate (SDS) micelles and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-[phospho-(1-glycerol)] sodium salt (DPPG) phospholipid liposomes. The reaction behavior of dibenzylamine-, monobenzylamine-, and dibutylamine-derived substrates [1]: R1 = C6H5CH2, R2 = C6H5CH2 NH2+(CH2)2, 2: R1 = C6H5CH2, R2 = NH3+(CH2)2, and 3: R1 = n-butyl, R2 = n-butyl-NH2+(CH2)6] has been compared with that of SPER/NO, 4: R1 = H2N(CH2)3, R2 = H2N(CH2) 3NH2+(CH2)4]. Catalysis of NO release is observed in both micellar and liposome media. Hydrophobic interactions contribute to micellar binding for 1-3 and appear to be the main factor facilitating catalysis by charge neutral DPPC liposomes. Binding constants for the association of 1 and 3 with SDS micelles were 3-fold larger than those previously obtained with comparable zwitterionic substrates lacking their hydrophobic structure. Anionic DPPG liposomes were much more effective in catalyzing NO release than either DPPC liposomes or SDS micelles. DPPG liposomes (at 10 mM total lipid) induced a 30-fold increase in the NO dissociation rate of SPER/NO compared to 12- and 14-fold increases in that of 1 and 3.  相似文献   

20.
Diazeniumdiolate reactivity in model membrane systems.   总被引:1,自引:1,他引:0  
The effect of small unilamellar phospholipid vesicles on the acid-catalyzed dissociation of nitric oxide from diazeniumdiolate ions, R(1)R(2)N[N(O)NO](-), [1: R(1)=H(2)N(CH(2))(3)-, R(2)=H(2)N(CH(2))(3)NH(CH(2))(4)-; 2: R(1)=R(2)=H(2)N(CH(2))(3)-; 3: R(1)=n-butyl-, R(2)=n-butyl-NH2+(CH(2))(6)-; 4: R(1)=R(2)=nPr-] has been examined at pH 7.4 and 37 degrees C. NO release was catalyzed by anionic liposomes (DPPG, DOPG, DMPS, POPS and DOPA) and by mixed phosphatidylglycerol/phosphatidylcholine (DPPG/DPPC and DOPG/DPPC) covesicles, while cationic liposomes derived from 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic liposome DMPC did not significantly affect the dissociation rates of the substrates examined. Enhancement of the dissociation rate constant in DPPG liposome media (0.010M phosphate buffer, pH 7.4, 37 degrees C) at 10mM phosphoglycerol levels, ranged from 37 for 1 to 1.2 for the anionic diazeniumdiolate 4, while DOPA effected the greatest rate enhancement, achieving 49-fold rate increases with 1 under similar conditions. The observed catalysis decreases with increase in the bulk concentration of electrolytes in the reaction media. Quantitative analysis of catalytic effects has been obtained through the application of pseudo-phase kinetic models and equilibrium binding constants at different liposome interfaces are compared. The stoichiometry of nitric oxide release from 1 and 2 in DPPG/DPPC liposome media has been obtained through oxyhemoglobin assay. DPPG=1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DOPG=1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DMPS=1,2-dimyristoyl-sn-glycero-3-[phospho-l-serine], POPS=1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine], DOPA=1,2-dioleoyl-sn-glycero-3-phosphate; DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DMPC=1,2-dimyristoyl-sn-glycero-3-phosphocholine, DOTAP=1,2-dioleoyl-3-trimethylammonium-propane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号