首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular and subcellular localization of phototropin 1   总被引:22,自引:0,他引:22       下载免费PDF全文
Sakamoto K  Briggs WR 《The Plant cell》2002,14(8):1723-1735
Phototropin 1 (phot1) is a Ser/Thr photoreceptor kinase that binds two molecules of flavin mononucleotide as its chromophores and undergoes autophosphorylation in response to blue light. Phot1 is plasma membrane associated and, as with phot2, has been shown to function as a photoreceptor for phototropism, blue light-induced chloroplast movement, and blue light-induced stomatal opening. Phot1 likely also plays a redundant role with phot2 in regulating the rate of leaf expansion. Understanding the mechanism(s) by which phot1 initiates these four different responses requires, at minimum, knowledge of where the photoreceptor is located. Therefore, we transformed a phot1 null mutant of Arabidopsis with a construct encoding translationally fused phot1-green fluorescent protein (GFP) under the control of the endogenous PHOT1 promoter and investigated its cellular and subcellular distribution. This PHOT1-GFP construct complements the mutant phenotype, restoring second positive curvature. Phot1 is expressed strongly in dividing and elongating cortical cells in the apical hook and in the root elongation zone in etiolated seedlings. It is localized evenly to the plasma membrane region in epidermal cells but is confined largely to the plasma membrane region of the transverse cell walls in the cortical cells of both root and hypocotyl. It is found at both apical and basal ends of these cortical cells. In light-grown plants, phot1-GFP is localized largely in the plasma membrane regions adjacent to apical and basal cell end walls in the elongating inflorescence stem, where the photoreceptor is expressed strongly in the vascular parenchyma and leaf vein parenchyma. Phot1 also is localized to the plasma membrane region of leaf epidermal cells, mesophyll cells, and guard cells, where its distribution is uniform. Although phot1 is localized consistently to the plasma membrane region in etiolated seedlings, a fraction becomes released to the cytoplasm in response to blue light. Possible relationships between observed phot1 distribution and the various physiological responses activated by blue light are discussed.  相似文献   

2.
Previous studies have described a cardiac-specific, catalase-overexpressing transgenic mouse model that was used to study myocardial oxidative injury. This study was undertaken to demonstrate cellular and subcellular localization of catalase in the hearts of transgenic mice. By the light microscopic immunoperoxidase method, we found that the overexpressed catalase was exclusively localized in cardiomyocytes. The ratios of immunoreactive cardiomyocytes in the heart were quite different among three transgenic lines examined but agreed with the elevated levels of catalase activity. In the cardiac blood vessels, positive cells were found in the walls of pulmonary veins and the vena cava, which consist of cardiomyocytes, but not in the pulmonary arteries, aorta, or cardiac valves. The electron microscopic immunogold method revealed that the elevated catalase was in sarcoplasm, nucleus, and peroxisomes, but not in mitochondria. In contrast to these distributions, catalase in the non-transgenic cardiomyocytes was in peroxisomes only. In addition, the number and size of peroxisomes in the transgenic cardiomyocytes were markedly increased, but no other ultrastructural changes were observed in comparison with those of non-transgenic mice. These results demonstrated that the elevated catalase in transgenic mouse heart is localized in cardiomyocytes and is distributed to peroxisomal and extraperoxisomal, but not mitochondrial, compartments.  相似文献   

3.
Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.  相似文献   

4.
5.
Summary The cellular and subcellular localization of 6.7-3H-estradiol-17 in the pituitaries of five immature and two mature castrated female rats was studied by autoradiography. The autoradiographic technique used minimizes or eliminates translocation. It is based on low temperature tissue preparation of freeze-dried sections which are dry-mounted on dried photographic emulsion, excluding known sources of translocation artifacts such as liquid fixatives, dehydrating and clearing fluids, embedding media and thawing. The animals were given from 0.093 to 0.63 g of 3H-estradiol and were sacrificed at 15 min, 1, 2, or 6 hours after the injection. A large portion of the anterior pituitary cells was found to be labeled; the extent of this labeling varied with dose, time of sacrifice after the injection, and photographic exposure time, but apparently not with the endocrine status of the animal. The portions labeled were 76 and 86 per cent for the immature and mature rats respectively, exceeding single tinctorial light-microscopic groups. Gomori trichrome chromophiles and chromophobes, cells with intense and weak pyronin basophilia, as well as morphologically defined castration cells, were all partially labeled and unlabeled. Acidophiles appeared to be labeled in a somewhat higher proportion. Cells of the intermediate and posterior lobe were generally unlabeled except for occasionally interspersed cell groups or single cells, especially at the border between intermediate and posterior lobe, probably identical with basophilic invaginations in man and other mammals. The subcellular concentration of radioactivity was always nuclear. The findings are interpreted as suggesting a) feedback control on the pituitary level, in addition to the diencephalic level, b) pluripotentiality of anterior pituitary cells, and c) possible positive feedback mechanism of estradiol with secondary negative effect. Dry-mount autoradiography with labeled hormones, as applied in this study, provides a new methodological approach to the elucidation of pituitary physiology and pharmacology.Supported by USPHS Grants 1-ROl-AM-12, 649-01, GRS Grant FR-5367, ACS Grant IN-41-H, and Otho Sprague Memorial Institutional Grant. — The author thanks Dr. N. S. HALMI for consultation.  相似文献   

6.
Summary The cellular and subcellular localization of radioactivity in the brain of immature female rats was determined by dry-mount autoradiography 2 h after iv injection of 1.0 g of (monethyl-3H) diethylstilboestrol per 100 g body weight. A specific topographic pattern of nuclear concentration of the synthetic oestrogen was obtained similar to that for 3H-oestradiol-17 in specific neurons of the basal hypothalamus, preoptic region and amygdala. In competition experiments, the nuclear concentration of radioactivity in all areas studied was inhibited by unlabeled oestradiol, while unlabeled testosterone had no effect. These data suggest that although oestradiol can bind to androgen receptors, the oestrogen receptor itself can account for the localization seen after the injection of 3H-oestradiol.This research was supported in part by US PHS Grant No. NS12933NIH Career Development Awardee No. NS00164The expert technical assistance of Ms. Riki Ison and Ms. Linda Furr is gratefully acknowledged.  相似文献   

7.
8.
Stathmin is a 19 kDa cytosolic phosphoprotein, proposed to act as a relay integrating diverse intracellular signaling pathways involved in regulation of cell proliferation, differentiation, and function. To gain further information about its significance during early development, we analyzed stathmin expression and subcellular localization in mouse oocytes and preimplantation embryos. RT‐PCR analysis revealed a low expression of stathmin mRNA in unfertilized oocytes and a higher expression at the blastocyst stage. A fine cytoplasmic punctuate fluorescent immunoreactive stathmin pattern was detected in the oocyte, while it evolved toward an increasingly speckled pattern in the two‐cell and later four‐ to eight‐cell embryo, with even larger speckles at the morula stage. In blastocysts, stathmin immunoreactivity was fine and intense in inner cell mass cells, whereas it was low and variable in trophectodermal cells. Electron microscopic analysis allowed visualization with more detail of two types of stathmin immunolocalization: small clusters in the cytoplasm of oocytes and blastocyst cells, together with loosely arranged clusters around the outer membrane of cytoplasmic vesicles, corresponding to the immunofluorescent speckles in embryos until the morula stage. In conclusion, it appears from our results that maternal stathmin is accumulated in the oocyte and is relocalized within the oocyte and early preimplantation embryonic cell cytoplasm to interact with specific cytoplasmic membrane formations. Probably newly synthesized, embryonic stathmin is expressed in the blastocyst, where it is localized more uniformly in the cytoplasm mostly of inner cell mass (ICM) cells. These expression and localization patterns are probably related to the particular roles of stathmin at the successive steps of oocyte maturation and early embryonic development. They further support the proposed physiologic importance of stathmin in essential biologic regulation. Mol. Reprod. Dev. 53:306–317, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Glucosinolates are amino acid-derived secondary metabolites with diverse biological activities dependent on chemical modifications of the side chain. Five flavin-monooxygenases FMO(GS-OX1-5) have recently been identified as aliphatic glucosinolate side chain modification enzymes in Arabidopsis thaliana that catalyse the generation of methylsulphinylalkyl glucosinolates, which can be hydrolysed to products with distinctive benefits for human health and plant defence. Though the localization of most aliphatic glucosinolate biosynthetic enzymes has been determined, little is known about where the side chain modifications take place despite their importance. Hence, the spatial expression pattern of FMO(GS-OX1-5) genes in Arabidopsis was investigated by expressing green fluorescent protein (GFP) and β-glucuronidase (GUS) fusion genes controlled by FMO(GS-OX1-5) promoters. The cellular compartmentation of FMO(GS-OX1) was also detected by transiently expressing a FMO(GS-OX1)-yellow fluorescent protein (YFP) fusion protein in tobacco leaves. The results showed that FMO(GS-OX1-5) were expressed basically in vascular tissues, especially in phloem cells, like other glucosinolate biosynthetic genes. They were also found in endodermis-like cells in flower stalk and epidermal cells in leaf, which is a location that has not been reported for other glucosinolate biosynthetic genes. It is suggested that the spatial expression pattern of FMO(GS-OX1-5) determines the access of enzymes to their substrate and therefore affects the glucosinolate profile. FMO(GS-OX1)-YFP fusion protein analysis identified FMO(GS-OX1) as a cytosolic protein. Together with the subcellular locations of the other biosynthetic enzymes, an integrated map of the multicompartmentalized aliphatic glucosinolate biosynthetic pathway is discussed.  相似文献   

10.
Summary Antimonate staining procedures and energy dispersive X-ray microanalytical techniques were used to determine the patterns of localization of calcium in nonstimulated and gravistimulated corn roots. In horizontally positioned roots within the region of the developing bend there was a change in the staining from that principally localized within cells of the stele to asymmetric staining within the vacuoles of the cortical cells along the upper root surface. There was little staining in the walls. The pattern observed is quite different from that seen in gravistimulated coleoptiles. Staining of mitochondria, plastids and Golgi stacks was seen in most cell types, but no asymmetry of staining was observed. In the rootcap where graviperception is thought to occur, there was little staining of any cellular organelles.  相似文献   

11.
12.
13.
Carbon monoxide (CO), an activator of soluble guanylate cyclase (SGC) and generated enzymatically by heme oxygenases (HO), is considered to function as an intra- and intercellular neuromodulator or neurotransmitter in the central and peripheral nervous systems. HO-2 is the constitutive isoform of HO and is more prevalent in nervous tissues than in the other peripheral tissues. Because previous studies have demonstrated different distributions of HO-2 in the retina depending on the species of animals, the aim of this study was to identify which cell types of the monkey retina express HO-2. The expression of HO-2 protein was examined in monkey retina by Western blot analysis. Immunoblottings from monkey homogenates revealed a single clear protein band with a molecular mass of 36 kDa that is corresponding to rat HO-2. Immunoreactivity of HO-2 was found in the perikarya of ganglion cells. Density of immunoreactive ganglion cells was higher in the central area of retina than in the peripheral retina, and somata of larger ganglion cells were stained more densely than smaller ones. In electron microscopy, immunoreactivity of HO-2 was localized on the membrane of the endoplasmic reticulum and the nuclear outer membrane of the ganglion cells. By contrast, inner plexiform layer, inner nuclear layer and outer nuclear layer were devoid of HO-2 immunoreactivity. cGMP were strongly localized in all of ganglion cells. Some cells contributed to the relatively faint cGMP staining were seen in the inner nuclear layer. In combination of HO-2 and cGMP immunocytochemistry, the overlap of co-localization of HO-2 and cGMP would suggest that HO-2 in the ganglion cells would serve as a source for CO generation and CO could serve as a gaseous signaling molecule modulator of neural activity in the retina of monkey.  相似文献   

14.
The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.  相似文献   

15.
Inhibitory glycine receptors are most abundant in spinal cord and brainstem, and glycinergic synapses have a well-established role in the regulation of locomotor behavior. Little is known about the function of glycine receptors in cortex and hippocampus, where GABA plays a dominant role in synaptic inhibition. Therefore, we have investigated tissue and cellular expression of glycine receptor alpha-subunits. Western blot and immunohistochemical analyses reveal the presence of glycine receptors in hippocampal tissue. Immunocytochemical experiments in hippocampal cultures show prominent cellular expression of glycine receptors in pyramidal neurons and GAD-positive interneurons similar to the calcium-binding protein VILIP-1 with widespread hippocampal distribution. On the subcellular level we found co-staining of GlyR and the presynaptic marker synapsin I. Furthermore, co-staining with GAD at synaptic terminals indicated partial co-localization of GABA- and glycine receptors.  相似文献   

16.
The peripheral benzodiazepine receptor (PBR) is currently used as a marker of inflammation and gliosis following brain injury. Previous reports suggest that elevated PBR levels in injured brain tissue are specific to activated microglia and infiltrating macrophages. We have produced hippocampal lesions using the neurotoxicant trimethyltin (TMT) to examine the cellular and subcellular nature of the PBR response. Degenerating, argyrophilic pyramidal neurons were observed in the hippocampus at 2 and 14 days after TMT exposure. Reactive microglia were also evident at both times with a maximal response observed at 14 days, subsiding by 6 weeks. Astrocytosis was observed at 14 days and 6 weeks, but not 2 days, after TMT administration, suggesting that the onset of the astroglia response is delayed, but more persistent, compared with microgliosis. Morphological evidence from [3H]PK11195 microautoradiography and PBR immunohistochemistry indicates that both astrocytes and microglia are capable of expressing high levels of PBR after injury. This was confirmed by double labeling of either Griffonia simplicifolia isolectin B4, a microglial-specific marker, or glial fibrillary acidic protein, an astrocyte-specific protein with PBR fluorescence immunohistochemistry. These results demonstrate that PBR expression is increased after brain injury in both activated microglia and astrocytes. Our findings also provide the first evidence for in situ nuclear localization of PBR in glial cells.  相似文献   

17.
18.
The results of immunoblot analysis performed with a specific monoclonal antibody showed that the intestinal mucosa, pancreas and liver are privileged tissues for the expression of annexin IV. Immunofluorescence labelling of thin frozen sections of these tissues showed a strong concentration of annexin IV along the basolateral domain of the plasma membrane of intestinal absorbing cells, hepatocytes and pancreatic acinar cells, whereas in intestinal mucous secreting cells and centro acinar pancreatic cells, annexin IV was found to be present throughout the cytoplasm.  相似文献   

19.
The ovine embryo produces an interferon named ovine Trophoblastin (oTP) which is involved in the maternal recognition of pregnancy and ensures the maintenance of progesterone secretion by the corpus luteum. We have used indirect immunohistofluorescence and in situ hybridization on histological sections to investigate the fate of this protein and its mRNA in ovine embryos from days 3 to 25 of pregnancy. The level of expression was measured by image analysis of the autoradiographs after in situ hybridization. Both techniques clearly demonstrated that oTP and its mRNA were specifically localized in the extra-embryonic trophoblast. Neither the embryonic cells, nor the yolk sac or the amniotic tissues produced the protein or its mRNA. The protein could be detected by d 11 of pregnancy in the elongated blastocyst. Maximum of expression is observed at d 14 and the level decreased by d 16 of pregnancy. The arrest of expression occurred in the regions of trophoblast which have established cellular contacts with the uterine epithelium during the implantation process.  相似文献   

20.
We have identified a copper P(1B)-ATPase transporter in soybean (Glycine max), named as GmHMA8, homologue to cyanobacterial PacS and Arabidopsis thaliana AtHMA8 (PAA2) transporters. A novel specific polyclonal anti-GmHMA8 antibody raised against a synthetic peptide reacted with a protein of an apparent mass of around 180-200 kDa in chloroplast and thylakoid membrane preparations isolated from soybean cell suspensions. Immunoblot analysis with this antibody also showed a band with similar apparent molecular mass in chloroplasts from Lotus corniculatus. Immunofluorescence labelling with the anti-GmHMA8 antibody and double immunofluorescence labelling with anti-GmHMA8 and anti-RuBisCo antibodies revealed the localization of the GmHMA8 transporter within the chloroplast organelle. Furthermore, the precise ultrastructural distribution of GmHMA8 within the chloroplast subcompartments was demonstrated by using electron microscopy immunogold labelling. The GmHMA8 copper transporter from soybean was localized in the thylakoid membranes showing a heterogeneous distribution in small clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号