首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complementary DNA encoding human 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) has been expressed in transfected GH4C1 with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of [3H]-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3 beta-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide) and its analogues inhibit DHEA oxidation competitively while they exert a noncompetitive inhibition of the isomerization of 5-androstenedione to 4-androstenedione with an approximately 1000-fold higher Ki value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3 beta-HSD protein. In addition, using 5 alpha-dihydrotestosterone (DHT) and 5 alpha-androstane-3 beta, 17 beta-diol as substrates for dehydrogenase activity only, we have found that dehydrogenase activity is reversibly and competitively inhibited by 4MA. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.  相似文献   

2.
Following transfection of types 1, 2 and 3 17β-hydroxysteroid dehydrogenase (17β-HSD) cDNAs into transformed embryonal kidney (293) cells, we have characterized the selective directional and inhibitory characteristics of these activities. While homogenates of transfected cells could catalyze interconversion of the substrate and product, in agreement with the general belief on the activity of these enzymes, the same activities measured in intact cells, in order to better reflect the physiological conditions, showed an unidirectional reaction. Types 1 and 3 17β-HSD catalyzed the reduction of estrone to estradiol and 4-androstenedione to testosterone, respectively, while type 2 17β-HSD catalyzed the oxidative transformation of both testosterone and 17β-estradiol to 4-androstenedione and estrone, respectively. In addition, types 1, 2 and 3 17β-HSD activities showed different pH optima. While types 1 and 3 showed pH optimum values centered at around 5 and 6, respectively, type 2 17β-HSD activity, which preferentially catalyzes the oxidation reaction, has higher activity at an alkaline pH (8–10). Differences in the optimum incubation temperatures were also observed: type 1 17β-HSD shows a relatively high temperature tolerance (55°C). In contrast, type 2 and 3 functioned best at 37°C. Types 1, 2 and 3 17β-HSD activities could be also differentiated by their sensitivity toward various specific inhibitors: type 1 was potently inhibited by an estradiol derivative containing a bromo/or iodopropyl group at position 16. On the other hand a derivative of estrone containing a spiro-γ-lactone at position 17 showed a potent inhibitory effect on type 2 17β-HSD, whereas type 3 was strongly inhibited by 1,4-androstadiene-1,6,17-trione.  相似文献   

3.
Human type I placental 3β-hydroxy-5-ene-steroid dehydrogenase/steroid 5→4-ene-isomerase (3β-HSD/isomerase) synthesizes androstenedione from fetal dehydroepiandrosterone and progesterone from pregnenolone. The full length cDNA that encodes type I 3β-HSD/isomerase was inserted into the baculovirus, Autographa californica multiple nucleocapsid polyhedrosis virus, and expressed in Spodoptera fungiperda (Sf-9) insect cells. Western blots showed that the baculovirus-infected Sf-9 cells produced an immunoreactive protein that co-migrated with purified placental 3β-HSD/isomerase. Ultracentrifugation localized the expressed enzyme activities in all the membrane-associated organelles of the Sf-9 cell (nuclear, mitochondrial and microsomal). Kinetic studies showed that the expressed enzyme has 3β-HSD and isomerase activities. The Michaelis-Menton constant is very similar for the 3β-HSD substrate, 5-androstan-3β-o1-17-one, in the Sf-9 cell homogenate (Km = 17.9 μM) and placental microsomes (Km = 16.7 μM). The 3β-HSD activity (Vmax = 14.5 nmol/min/mg) is 1.6-fold higher in the Sf-9 cell homogenate compared to placental microsomes (Vmax = 9.1 nmol/min/mg). The Km values are almost identical for the isomerase substrate, 5-androstene-3,17-dione, in the Sf-9 cell homogenate (Km = 14.7 μM) and placental microsomes (Km = 14.4 μM). The specific isomerase activity is 1.5-fold higher in the Sf-9 cells (Vmax = 25.7 nmol/min/mg) relative to placenta (Vmax = 17.2 nmol/min/mg). These studies show that our recombinant baculovirus system over-expresses fully active enzyme that is kinetically identical to native 3β-HSD/isomerase in human placenta.  相似文献   

4.
To study mechanisms of aromatase inhibition in brain cells, a highly effective non-steroidal aromatase inhibitor (Fadrozole; 4-[5,6,7,8-tetra-hydroimidazo-(1,5-a)-pyridin-5-yl] benzonitrile HCl; CGS 16949A) was compared with endogenous C-19 steroids, known to be formed in the preoptic area, which inhibit oestrogen formation. Using a sensitive in vitro tritiated water assay for aromatase activity in avian (dove) preoptic tissue, the order of potency, with testosterone as substrate was: Fadrozole (Ki < 1 × 10−9 M) > 4-androstenedione 5-androstanedione > 5-dihydrotestosterone (Ki = 6 × 10−8 M) > 5β-androstanedione > 5β-dihydrotestosterone (Ki = 3.5 × 10−7 M) > 5-androstane-3, 17β-diol (Ki = 5 × 10−6 M) > 5β-androstane-3β,17β-diol. Five other steroids, 5β-androstane-3,17β-diol, 5-androstane-3β,17β-diol, progesterone, oestradiol and oestrone, showed no inhibition at 10−4 M. The kinetics indicate that endogenous C-19 steroids show similar competitive inhibition of the aromatase as Fadrozole. Mouse (BALB/c) preoptic aromatase was also inhibited by Fadrozole. We conclude that endogenous C-19 metabolites of testosterone are effective inhibitors of the brain aromatase, and suggest that they bind competitively at the same active site as Fadrozole.  相似文献   

5.
3β-hydroxysteroid dehydrogenase 5-ene isomerase (3βHSD/I) activity is necessary for the biosynthesis of hormonally active steroids. A dual distribution of the enzyme was described in toad testes. The present study demonstrates that in testicular tissue of Bufo arenarum H., microsomal 3βHSD/I has more affinity for dehydroepiandrosterone (DHEA) than for pregnenolone (Km=0.17±0.03 and 1.02 μM, respectively). The Hill coefficient for the conversion of DHEA and pregnenolone were 1.04 and 1.01, respectively. The inclusion of DHEA in the kinetic analysis of pregnenolone conversion affected Vmax while Km was not modified, suggesting a non-competitive inhibition of the conversion of pregnenolone. Ki was calculated from replot of Dixon's slope for each substrate concentration. Ki from the intercept and the slope of this replot were similar (0.276±0.01 and 0.263±0.02 μM) and higher than the Km for DHEA. The Km and Ki values suggest the presence of two different binding sites. When pregnenolone was present in the assays with DHEA as substrate, no effect was observed on the Vmax while Km values slightly increased with pregnenolone concentration. Consequently, pregnenolone inhibited the transformation of DHEA in a competitive fashion. These studies suggest that, in this species, the microsomal biosyntheses of androgens and progesterone are catalysed by different active sites.  相似文献   

6.
The formation of 4-ene-3-ketosteroids from 3β-hydroxy-5-ene precursors is an obligatory step in the biosynthesis of hormonal steroids such as glucocorticoids, mineralocorticoids, estrogens and androgens. In the adrenal cortex, pregnenolone, 17-hydroxy-pregnenolone and dehydroisoandrosterone are converted to progesterone, 17-hydroxy-progesterone and androstenedione, respectively, by the enzymatic system 3β-hydroxy-5-ene steroid dehydrogenase and 3-keto-5-ene steroid isomerase (3β-HSD/I).

The present work reports a two step purification procedure which yields an homogenous preparation of 3β-HSD/I from bovine adrenal cortex. It uses solubilization of the microsomal proteins followed by two chromatographic steps, i.e. DEAE-cellulose and heparine-sepharose columns. The enzyme was obtained as an homogeneous protein exhibiting an apparent molecular size of 45 kDa upon SDS-gel electrophoresis and of 81 kDa upon gel filtration. The purified enzyme exhibits both the 5-ene-3β-ol steroid dehydrogenase and isomerase activities in contrast to previous work using a more complex procedure which yielded a final preparation having lost its isomerase activity [Hiwatashi et al., Biochem. J. 98 (1985) 1519–1525]. N-terminal aminoacid (29 residues) sequence of the purified protein was determined and was found identical to that predicted from the nucleic acid sequence of the recently identified enzyme cDNA [Zhas et al. FEBS Lett. 259 (1989) 153–157].  相似文献   


7.
Through the treatment of rat testicular microsomes with sodium cholate, 3 beta-hydroxy-5-ene-steroid dehydrogenase and 5-ene-4-ene isomerase (abbreviated as the 3 beta-hydroxysteroid dehydrogenase and isomerase, respectively) were solubilized, and then purified by DEAE and hydroxylapatite column chromatographies. The findings were as follows: With this purification procedure, the 3 beta-hydroxysteroid dehydrogenase activity could not be separated from the isomerase. For 3-oxo-4-ene-steroid formation from 3 beta-hydroxy-5-ene-steroids, NAD+ was required as a cofactor. While the 3 beta-hydroxysteroid dehydrogenase required NAD+, the isomerase also required NAD+ or its reduced form, in contrast to the microbial enzyme. On treatment of the purified enzyme with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA), both enzyme activities were markedly reduced. The enzyme, affinity labeled with [adenine-8-14C]FSBA, showed a mol. wt of 46.8 K. During 4-androstenedione production from DHA, 5-androstenedione was detected as an intermediate.  相似文献   

8.
The isoflavones daidzein, genistein, biochanin A and formononetin inhibit potently and preferentially the γ-isozymes of mammalian alcohol dehydrogenase (γγ-ADH), the only ADH isozyme that catalyzes the oxidation of 3β-hydroxysteroids. Based on these results, we proposed that these isoflavones might also act on other enzymes involved in 3β-hydroxysteroid metabolism. Recently, we showed that they indeed are potent inhibitors of a bacterial β-hydroxysteroid dehydrogenase (β-HSD). To extend this finding to the mammalian systems, we hereby purified, characterized and studied the effects of isoflavones and structurally related compounds on, a bovine adrenal 3β-hydroxysteroid dehydrogenase (3β-HSD). This enzyme catalyzes the oxidation of 3β-hydroxysteroids but not 3-, 11β- or 17β-hydroxysteroids. The same enzyme also catalyzes 5-ene-4-ene isomerization, converting 5-pregnen 3, 20-dione to progesterone. The Km values of its dehydrogenase activity determined for a list of 3β-hydroxysteroid substrates are similar (1 to 2 μM) and that of its isomerase activity, determined with 5-pregnen 3, 20-dione as a substrate, is 10 μM. The kcat value determined for its isomerase activity (18.2 min−1) is also higher than that for its dehydrogenase activity (1.4–2.4 min−1). A survey of more than 30 isoflavones and structurally related compounds revealed that daidzein, genistein, biochanin A and formononetin inhibit both the dehydrogenase and isomerase activity of this enzyme. Inhibition is potent and concentration dependent. IC50 values determined for these compounds range from 0.4 to 11 μM, within the plasma and urine concentration ranges of daidzein and genistein of individuals on vegetarian diet or semi-vegetarian diet. These results suggest that dietary isoflavones may exert their biological effects by inhibiting the action of 3β-HSD, a key enzyme of neurosteroid and/or steroid hormone biosynthesis.  相似文献   

9.
The isoenzymes of the 3β-hydroxysteroid dehydrogenase/5-ene-4-ene-isomerase (3β-HSD) gene family catalyse the transformation of all 5-ene-3β-hydroxysteroids into the corresponding 4-ene-3-keto-steroids and are responsible for the interconversion of 3β-hydroxy- and 3-keto-5-androstane steroids. The two human 3β-HSD genes and the three related pseudogenes are located on the chromosome 1p13.1 region, close to the centromeric marker D1Z5. The 3β-HSD isoenzymes prefer NAD+ to NADP+ as cofactor with the exception of the rat liver type III and mouse kidney type IV, which both prefer NADPH as cofactor for their specific 3-ketosteroid reductase activity due to the presence of Tyr36 in the rat type III and of Phe36 in mouse type IV enzymes instead of Asp36 found in other 3β-HSD isoenzymes. The rat types I and IV, bovine and guinea pig 3β-HSD proteins possess an intrinsic 17β-HSD activity psecific to 5-androstane 17β-ol steroids, thus suggesting that such “secondary” activity is specifically responsible for controlling the bioavailability of the active androgen DHT. To elucidate the molecular basis of classical form of 3β-HSD deficiency, the structures of the types I and II 3β-HSD genes in 12 male pseudohermaphrodite 3β-HSD deficient patients as well as in four female patients were analyzed. The 14 different point mutations characterized were all detected in the type II 3β-HSD gene, which is the gene predominantly expressed in the adrenals and gonads, while no mutation was detected in the type I 3β-HSD gene predominantly expressed in the placenta and peripheral tissues. The mutant type II 3β-HSD enzymes carrying mutations detected in patients affected by the salt-losing form exhibit no detectable activity in intact transfected cells, at the exception of L108W and P186L proteins, which have some residual activity (1%). Mutations found in nonsalt-loser patients have some residual activity ranging from 1 to 10% compared to the wild-type enzyme. Characterization of mutant proteins provides unique information on the structure-function relationships of the 3β-HSD superfamily.  相似文献   

10.
The enzyme 3β-hydroxysteroid dehydrogenase isomerase (3β-HSD/I) in an essential step in the biosynthesis of steroid such as progesterone, mineralo- and gluco-corticoids, estrogens and androgens in steroidogenic tissues. It is considered to be mainly localized in microsomes; however, 3β-HSD/I activity has also been described to be associated with mitochondrial preparations. In this study, we examined the subcellular distribution of 3β-HSD/I in bovine adrenocortical tissue and we characterized the catalytic properties of the enzyme present in the various cell compartments. About 30% of the total 3β-HSD/I activity was found to remain tightly associated with the purified mitochondrial pellet. The 3β-HSD/I and 3-ketoreductase activities were found in microsomes as well as in mitochondria. The 3β-HSD/I associated with the mitochondrial fraction did not required addition of exogenous NAD+. When the pyridine nucleotide was reduced ollowing addition of substrate of the tricarboxyllic acids cycle, the mitochondrial 3β-HSD/I activity decreased, suggesting that the enzyme utilizes NAD+ available from the matrix space. By contrast, the microsomal enzyme was inactive in the absence of exogenous NAD+. Submitochondrial fraction disclosed that 3β-HSD/I was associated (i) with the inner membrane and (ii) with a particulate fraction sedimenting in a density gradient between inner and outer membranes. This fraction was characterized as contact sites between the two membranes. 3β-HSD/I specific activity was much higher in this fraction than in the inner mitochondrial membrane. Altogether, these observations suggest that these mitochondrial intermembrane contact sites may represent a spacial organization of functional significance, facilitating both the access of cholesterol to the inner membrane where cytochrome P-450scc is located and the rapid transformation of its product, pregnenolone, to progesterone, through 3β-HSD/I activity.  相似文献   

11.
The microsomal fraction from the testes of immature pigs (<1 week old) contains 3β-hydroxysteroid dehydrogenase-isomerase (3β-HSD-isomerase) activities that convert dehydroepiandrosterone (DHA) to 4-androstenedione and 5,16-androstadien-3β-ol (andien-β) to 4,16-androstadien-3-one (dienone). These reactions are necessary for the biosynthesis of hormonally and pheromonally active steroids. Kinetic analyses of these activities were done to determine whether they are catalysed by a single enzyme or if there is any interaction between the substrates and products of one reaction on the activity of the other enzyme. Kinetic parameters were determined and the affinities for steroid substrate were similar (7–9 μmol/l) but the Vmaxapp value for the conversion of andien-β to dienone was 10-fold that of the DHA to 4-androstenedione reaction. In analyses of the conversion of DHA to 4-androstenedione, neither andien-β nor dienone inhibited the reaction and especially, no effect on the Kmapp for DHA was observed which would have indicated competition between DHA and andien-β for the same active site (Kiapp from slope and intercept replots were between 3 and 80 times the values of the kinetic constants). Similarly, DHA and 4-androstenedione had minor or negligible effects on the conversion of andien-β to dienone (Kiapp from slope replots were the same as the Kmapp but the Kiapp from the intercept replot was 12 to 25% of the Vmaxapp). It is concluded that substrate specific 3β-HSD-isomerases for andien-β and DHA exist in the immature pig testis and there is little, if any interaction between these enzymes.  相似文献   

12.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

13.
The interconversion of estrone (E1) and 17β-estradiol (E2), androstenedione (4-ene-dione) and testosterone (T), as well as dehydroepiandrosterone and androst-5-ene-3β,17β-diol is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD). The enzyme 17β-HSD thus plays an essential role in the formation of all active androgens and estrogens in gonadal as well as extragonadal tissues. The present study investigates the tissue distribution of 17β-HSD activity in the male and female rat as well as in some human tissues and the distribution of 17β-HSD mRNA in some human tissues. Enzymatic activity was measured using 14C-labeled E1, E2, 4-ene-dione and T as substrates. Such enzymatic activity was demonstrated in all 17 rat tissues examined for both androgenic and estrogenic substrates. While the liver had the highestlevel of 17β-HSD activity, low but significant levels of E2 as well as T formation were found in rat brain, heart, pancreas and thymus. The oxidative pathway (E2→E1, T→4-ene-dione) was favored over the reverse reaction in almost all rat tissues while in the human, almost equal rates were found in most of the 15 tissues examined. The widespread distribution of 17β-HSD in rat and human tissues clearly indicates the importance of this enzyme in peripheral sex steroid formation or intracrinology.  相似文献   

14.
Previous studies have shown that the 80 kDa 17β-hydroxysteroid dehydrogenase (17β-HSD) type IV comprises distinct domains, including an N-terminal region related to the short chain alcohol dehydrogenase multigene family and a C-terminal part related to the lipid transfer protein sterol carrier protein 2 (SCP2). In this study, we have investigated whether the SCP2-related part of the 80 kDa protein leads to an intrinsic sterol and phospholipid transfer activity, as shown earlier for the 60 kDa SCP2-related peroxisomal 3-ketoacyl CoA thiolase with intrinsic sterol and phospholipid transfer activity called sterol carrier protein x (SCPx). Our results indicate that a fraction rich in the 80 kDa form of 17β-HSD type IV exhibits high transfer activities for 7-dehydrocholesterol and phosphatidylcholine. In addition, a purified recombinant peptide derived from the SCP2-related domain of the 17β-HSD type IV has about 30% of the transfer activities for 7-dehydrocholesterol and phosphatidylcholine seen with purified recombinant human SCP2. We conclude that the 80 kDa type IV 17β-HSD represents a potentially multifunctional protein with intrinsic in vitro sterol and phospholipid transfer activity in addition to its enzymatic activity.  相似文献   

15.
3β-Hydroxysteroid dehydrogenase/steroid Δ5 → 4-isomerase (3β-HSD/isomerase) was expressed by baculovirus in Spodoptera fungiperda (Sf9) insect cells from cDNA sequences encoding human wild-type I (placental) and the human type I mutants - H261R, Y253F and Y253,254F. Western blots of SDS-polyacrylamide gels showed that the baculovirus-infected Sf9 cells expressed the immunoreactive wild-type, H261R, Y253F or Y253,254F protein that co-migrated with purified placental 3β-HSD/isomerase (monomeric Mr=42,000 Da). The wild-type, H261R and Y253F enzymes were each purified as a single, homogeneous protein from a suspension of the Sf9 cells (5.01). In kinetic studies with purified enzyme, the H261R mutant enzyme had no 3β-HSD activity, whereas the Km and Vmax values of the isomerase substrate were similar to the values obtained with the wild-type and native enzymes. The Vmax (88 nmol/min/mg) for the conversion of 5-androstene-3,17-dione to androstenedione by the Y253F isomerase activity was 7.0-fold less than the mean Vmax (620 nmol/min/mg) measured for the isomerase activity of the wild-type and native placental enzymes. In microsomal preparations, isomerase activity was completely abolished in the Y253,254F mutant enzyme, but Y253,254F had 45% of the 3β-HSD activity of the wild-type enzyme. In contrast, the purified Y253F, wild-type and native enzymes had similar Vmax values for substrate oxidation by the 3β-HSD activity. The 3β-HSD activities of the Y253F, Y253,254F and wild-type enzymes reduced NAD+ with similar kinetic values. Although NADH activated the isomerase activities of the H261R and wild-type enzymes with similar kinetics, the activation of the isomerase activity of H261R by NAD+ was dramatically decreased. Based on these kinetic measurements, His261 appears to be a critical amino acid residue for the 3β-HSD activity, and Tyr253 or Tyr254 participates in the isomerase activity of human type I (placental) enzyme.  相似文献   

16.
We have copurified human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, which synthesize progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate, from microsomes as a homogeneous protein based on electrophoretic and NH2-terminal sequencing data. The affinity alkylator, 2 alpha-bromoacetoxyprogesterone, simultaneously inactivates the pregnene and androstene dehydrogenase activities as well as the C21 and C19 isomerase activities in a time-dependent, irreversible manner following first order kinetics. At four concentrations (50/1-20/1 steroid/enzyme M ratios), the alkylator inactivates the dehydrogenase activity (t1/2 = 1.5-3.7 min) 2-fold faster than the isomerase activity. Pregnenolone and dehydroepiandrosterone protect the dehydrogenase activity, while 5-pregnene-3,20-dione, progesterone, and androstenedione protect isomerase activity from inactivation. The protection studies and competitive kinetics of inhibition demonstrate that the affinity alkylator is active site-directed. Kitz and Wilson analyses show that 2 alpha-bromoacetoxyprogesterone inactivates the dehydrogenase activity by a bimolecular mechanism (k3' = 160.9 l/mol.s), while the alkylator inactivates isomerase by a unimolecular mechanism (Ki = 0.14 mM, k3 = 0.013 s-1). Pregnenolone completely protects the dehydrogenase activity but does not slow the rate of isomerase inactivation by 2 alpha-bromoacetoxyprogesterone at all. NADH completely protects both activities from inactivation by the alkylator, while NAD+ protects neither. From Dixon analysis, NADH competitively inhibits NAD+ reduction by dehydrogenase activity. Mixed cofactor studies show that isomerase binds NAD+ and NADH at a common site. Therefore, NADH must not protect either activity by simply binding at the cofactor site. We postulate that NADH binding as an allosteric activator of isomerase protects both the dehydrogenase and isomerase activities from affinity alkylation by inducing a conformational change in the enzyme protein. The human placental enzyme appears to express the pregnene and androstene dehydrogenase activities at one site and the C21 and C19 isomerase activities at a second site on the same protein.  相似文献   

17.
Estradiol (E2) plays a crucial role in all reproduction processes. In the placenta, it is well recognized that E2 is synthesized from fetal dehydroepiandrosterone sulfate (DHEAS). However, there is some controversy about the biosynthetic pathway involved, some authors suggest that E2 is produced by aromatization of testosterone (T), while others suggest that E2 is produced by the conversion of estrone (E1) into E2 by type 1 17β-HSD, subsequent to the aromatization of 4-androstenedione (4-dione) into E1. In the present report, using the precursor [14C]DHEA, inhibitors of steroidogenic enzymes (chemical inhibitors and siRNA) and a choriocarcinoma (JEG-3) cell line that expresses all the enzymes necessary to transform DHEA into E2, we could determine the sequential steps and the specific steroidogenic enzymes involved in the transformation of DHEA into E2. Quantification of mRNA expression levels using real-time PCR, strongly suggests that type 1 3β-hydroxysteroid dehydrogenase (3β-HSD1), aromatase and type 1 17β-HSD (17β-HSD1) that are highly expressed in JEG-3 cells are the enzymes responsible for the transformation of DHEA into E2. Analysis of the intermediates produced in the absence and presence of 3β-HSD, aromatase and 17β-HSD1 inhibitors permits to determine the following sequential steps: DHEA is transformed into 4-dione by 3β-HSD1, then 4-dione is aromatized into E1 by aromatase and E1 is finally transformed into E2 by 17β-HSD1. Our data are clearly in favor of the pathway in which the step of aromatization precedes the step of reduction by 17β-HSD.  相似文献   

18.
The enzyme 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3β-HSD) is essential for the production of all classes of steroid hormones. Multiple isozymes of this enzyme have been demonstrated in the kidney and liver of both the rat and the mouse, although the function of the enzyme in these tissues is unknown. We have characterized three isozymes of 3β-HSD expressed in various tissues of the hamster. Both western and northern blot analyses demonstrated very high levels of 3β-HSD in the adrenal, kidney and male liver. Conversely, there were extremely low levels of enzyme expression in the female liver. cDNA libraries prepared from RNA isolated from hamster adrenal, kidney and liver were screened with a full-length cDNA encoding human type 1 3β-HSD. Separate cDNAs encoding three isoforms of 3β-HSD were isolated from these libraries. To examine the properties of the isoforms, the cDNAs were ligated into expression vectors for over-expression in 293 human fetal kidney cells. The type 1 isoform, isolated from an adrenal cDNA library, was identified as a high-affinity 3β-hydroxysteroid dehydrogenase. A separate isoform, designated type 2, was isolated from the kidney, and this was also a high-affinity dehydrogenase/isomerase. Two cDNAs were isolated from the liver, one identical in sequence to type 2 of the kidney, and a distinct cDNA encoding an isoform designated type 3. The type 3 3β-HSD possessed no steroid dehydrogenase activity but was found to function as a 3-ketosteroid reductase. Thus male hamster liver expresses a high-affinity 3β-HSD (type 2) and a 3-ketosteroid reductase (type 3), whereas the kidney of both sexes express the type 2 3β-HSD isoform. These differ from the type 1 3β-HSD expressed in the adrenal cortex.  相似文献   

19.
In Bufo arenarum, androgen biosynthesis occurs through a complete 5-ene pathway, including 5-androstane-3β,17β-diol as the immediate precursor of testosterone. Besides, steroidogenesis changes during the breeding period, turning from androgens to C21-steroids such as 5-pregnan-3,20-diol, 3-hydroxy-5-pregnan-20-one and 5-pregnan-3,20-dione. In B. arenarum, steroid hormones are not involved in hCG-induced spermiation, suggesting that the steroidogenic shift to C21-steroids during the breeding be not related to spermiation. The activity of 17-hydroxylase-C17–20 lyase (CypP450c17) decreases during the reproductive season, suggesting that this enzyme would represent a key enzyme in the regulation of seasonal changes. However, the increase in the affinity for pregnenolone of 3β-hydroxysteroid dehydrogenase (3HSD)/isomerase could also be involved. Moreover, the reduction in CypP450c17 leading to a reduction in C19-steroids, among them dehydroepiandrosterone (DHE), would contribute to the conversion of pregnenolone into progesterone, avoiding the non-competitive inhibition exerted by DHE on this transformation. Additionally, CypP450c17 possesses a higher affinity for pregnenolone than for progesterone, explaining the predominance of the 5-ene pathway for testosterone biosynthesis. Animals in reproductive condition showed a significant reduction in circulating androgens, enhancing the physiological relevance of all the in vitro results. The in vitro effects of mGnRH and hrFSH on testicular steroidogenesis revealed that both hormones inhibited CypP450c17 activity. In summary, these results demonstrate that, in B. arenarum, the change in testicular steroidogenesis during the reproductive period could be partially due to an FSH and GnRH-induced decrease in CypP450c17 activity.  相似文献   

20.
The well-established neuroprotective effect of dehydroepiandrosterone (DHEA) has been attributed to its metabolism in the brain to provide estrogens known to be neuroprotective and to enhance memory and learning in humans and animals. However, our previous work showed that the conversion of DHEA to 4-androstenedione (AD), the precursor of estrone (E1) and estradiol (E2), is very low in several different types of neural cells, and that the main product is 7-hydroxy-DHEA (7-OH-DHEA). In this study, we found that microglia are an exception and produce mainly 5-androstene-3β,17β-diol (Δ5-Adiol), a C19 steroid with estrogen-like activity from DHEA. Virtually, no other products, including testosterone (T) were detected by TLC or HPLC in incubations of 3H-labeled DHEA with the BV2 microglial cell line. Microglia are important brain cells that are thought to play a house-keeping role during the steady state, and that are crucial to the brain's immune reaction to injury and the healing process. Our findings suggest that the microglia-produced Δ5-Adiol might have a role in modulating estrogen-sensitive neuroplastic events in the brain, in the absence of adequate local synthesis of estrone and estradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号