首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Protein homeostasis depends on a balance of translation, folding, and degradation. Here, we demonstrate that mild inhibition of translation results in a dramatic and disproportional reduction in production of misfolded polypeptides in mammalian cells, suggesting an improved folding of newly synthesized proteins. Indeed, inhibition of translation elongation, which slightly attenuated levels of a copepod GFP mutant protein, significantly enhanced its function. In contrast, inhibition of translation initiation had minimal effects on copepod GFP folding. On the other hand, mild suppression of either translation elongation or initiation corrected folding defects of the disease-associated cystic fibrosis transmembrane conductance regulator mutant F508del. We propose that modulation of translation can be used as a novel approach to improve overall proteostasis in mammalian cells, as well as functions of disease-associated mutant proteins with folding deficiencies.  相似文献   

2.
The type IV secretion system (T4SS) encoded within the gonococcal genetic island (GGI) of Neisseria gonorrhoeae has homology to the T4SS encoded on the F plasmid. The GGI encodes the putative pilin protein TraA and a serine protease TrbI, which is homologous to the TraF protein of the RP4 plasmid involved in circularization of pilin subunits of P-type pili. TraA was processed to a 68-amino acid long circular peptide by leader peptidase and TrbI. Processing occurred after co-translational membrane insertion and was independent of other proteins. Circularization occurred after removal of three C-terminal amino acids. Mutational analysis of TraA revealed limited flexibility at the cleavage and joining sites. Mutagenesis of TrbI showed that the conserved Lys-93 and Asp-155 are essential, whereas mutagenesis of Ser-52, the putative catalytic serine did not influence circularization. Further mutagenesis of other serine residues did not identify a catalytic serine, indicating that TrbI either contains redundant catalytic serine residues or does not function via a serine-lysine dyad mechanism. In vitro studies revealed that circularization occurs via a covalent intermediate between the C terminus of TraA and TrbI. The intermediate is processed to the circular form after cleavage of the N-terminal signal sequence. This is the first demonstration of a covalent intermediate in the circularization mechanism of conjugative pili.  相似文献   

3.
We describe the physicochemical characterization of various circular and linear forms of the approximately 60 residue N-terminal Src homology 3 (SH3) domain from the murine c-Crk adapter protein. Structural, dynamic, thermodynamic, kinetic and biochemical studies reveal that backbone circularization does not prevent the adoption of the natural folded structure in any of the circular proteins. Both the folding and unfolding rate of the protein increased slightly upon circularization. Circularization did not lead to a significant thermodynamic stabilization of the full-length protein, suggesting that destabilizing enthalpic effects (e.g. strain) negate the expected favorable entropic contribution to overall stability. In contrast, we find circularization results in a dramatic stabilization of a truncated version of the SH3 domain lacking a key glutamate residue. The ability to rescue the destabilized mutant indicates that circularization may be a useful tool in protein engineering programs geared towards generating minimized proteins.  相似文献   

4.
Thematic minireview series on circular proteins   总被引:1,自引:0,他引:1  
Circular proteins have now been discovered in all kingdoms of life and are characterized by their exceptional stability and the diversity of their biological activities, primarily in the realm of host defense functions. This thematic minireview series provides an overview of the distribution, evolution, activities, and biological synthesis of circular proteins. It also reviews approaches that biological chemists are taking to develop synthetic methods for making circular proteins in the laboratory. These approaches include solid-phase peptide synthesis based on an adaption of native chemical ligation technology and recombinant DNA approaches that are amenable to the in-cell production of cyclic peptide libraries. The thioester-mediated native chemical ligation approach mimics, to some extent, elements of the natural biosynthetic reaction, which, for disulfide-rich cyclic peptides, appears to involve asparaginyl endopeptidase-mediated processing from larger precursor proteins.  相似文献   

5.
Some characteristics of the protein kinase activity associated with a synaptosomal plasma membrane (synaptic membrane) fraction and a synaptic junction fraction have been compared. Autoradiography of the phosphorylated fractions separated on sodium dodecyl sulfate polyacrylamine gels showed that cyclic AMP stimulates the phosphorylation of five polypeptides in synaptic membranes, whereas no cyclic AMP dependency could be detected in synaptic junctions. Kinetic studies demonstrated that synaptic junctions contain at high Km and a low Km protein kinase activity while only the high Km activity could be detected in synaptic membranes. The intrinsic ATPase activity of synaptic membranes was shown to strongly interfere with measurements of protein kinase activity. Cyclic AMP binding experiments revealed a 2.6-fold enrichment of cyclic AMP binding capacity in synaptic junctions as compared to synaptic membranes. Protein phosphatase activity was not detected in synaptic junctions but was associated with synaptic membranes, where cyclic AMP was shown to either stimulate or inhibit the dephosphorylation of different polypeptides.  相似文献   

6.
In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation.  相似文献   

7.
Circular hammerhead ribozymes were synthesized from linear oligoribonucleotides using T4 RNA ligase. Some of the precursors could not be efficiently circularized under standard conditions. For these molecules, the use of a DNA template allowed their efficient circularization. The template was designed to prevent the precursor from folding into an unsuitable structure. The template allowed circular ribozymes as small as 15 nucleotides in length to be efficiently synthesized at concentrations as high as 50 microM in the ligation reaction. The circular products retained their biological activity.  相似文献   

8.
Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic β-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases.  相似文献   

9.
Protein domains usually fold without or with only transiently populated intermediates, possibly to avoid misfolding, which could result in amyloidogenic disease. Whether observed intermediates are productive and obligatory species on the folding reaction pathway or dispensable by-products is a matter of debate. Here, we solved the crystal structure of a small protein domain, SAP97 PDZ2 I342W C378A, and determined its folding pathway. The presence of a folding intermediate was demonstrated both by single and double-mixing kinetic experiments using urea-induced (un)folding as well as ligand-induced folding. This protein domain was found to fold via a triangular scheme, where the folding intermediate could be either on- or off-pathway, depending on the experimental conditions. Furthermore, we found that the intermediate was present at equilibrium, which is rarely seen in folding reactions of small protein domains. The folding mechanism observed here illustrates the roughness and plasticity of the protein folding energy landscape, where several routes may be employed to reach the native state. The results also reconcile the folding mechanisms of topological variants within the PDZ domain family.  相似文献   

10.
Protein chaperones direct the folding of polypeptides into functional proteins, facilitate developmental signalling and, as heat-shock proteins (HSPs), can be indispensable for survival in unpredictable environments. Recent work shows that the main HSP chaperone families also buffer phenotypic variation. Chaperones can do this either directly through masking the phenotypic effects of mutant polypeptides by allowing their correct folding, or indirectly through buffering the expression of morphogenic variation in threshold traits by regulating signal transduction. Environmentally sensitive chaperone functions in protein folding and signal transduction have different potential consequences for the evolution of populations and lineages under selection in changing environments.  相似文献   

11.
Efficient protein folding and quality control are essential for unperturbed cell viability. Defects in these processes may lead to production of aberrant polypeptides that are either degraded leading to “loss-of-function” phenotypes, or deposited in or outside cells leading to “gain-of-toxic-function” phenotypes. Elucidation of molecular mechanisms regulating folding and quality control of newly synthesized polypeptides is therefore of greatest interest. Here we describe protocols for metabolic labelling of transfected/infected mammalian cells with [35S]-methionine and [35S]-cysteine, for immunoisolation from detergent extracts of the selected model proteins and for the investigation of the model polypeptide’s intracellular fate in response to chaperone-deletions or to cell exposure to folding or degradation inhibitors.  相似文献   

12.
Folding and unfolding are crucial ways of modulating biological activity and targeting proteins to different cellular locations. In the living system, protein folding occurs in a very crowded environment, often assisted with helper proteins. In some cases this pathway can go off beam and the protein can either misfold or aggregate or form structures of elongated-unbranched morphology known as amyloid fibrils. Protein folding is not just an academic matter. Recombinant biotechnology and pharmaceutical industries are some of the fields where both theoretical and practical knowledge of protein folding is required. Misfolded protein and amyloid fibrils that escape the cellular quality control check are the basic reason of a number of increasingly widespread neurodegenerative diseases such as Alzheimer's and variant Creutzfeldt-Jakob etc. Thus, protein folding study also emerges as an interesting area in the field of biomedical research. This review deals with basic concepts related to protein folding and misfolding forming toxic aggregates and amyloid fibrils as well as disease associated with them. A more practical approach will be revealed to the early diagnosis of aggregation-prone diseases and amyloid states and their balanced therapeutics.  相似文献   

13.
The present paper reviews the use of expressed protein ligation for the biosynthesis of backbone cyclized polypeptides. This general method allows the in vivo and in vitro biosynthesis of cyclic polypeptides using recombinant DNA expression techniques. Biosynthetic access to backbone cyclic peptides opens the possibility to generate cell-based combinatorial libraries that can be screened inside living cells for their ability to attenuate or inhibit cellular processes.  相似文献   

14.
蛋白质间相互作用技术的研究近况   总被引:6,自引:0,他引:6  
蛋白质间相互作用技术的研究近况黄翠芬叶棋浓(军事医学科学院生物工程研究所,北京100850关键词:蛋白质,相互作用,技术RecentAdvancesintheTechniquesofProtein┐ProteinInteractionsHuangCu...  相似文献   

15.
Understanding the origins of cooperativity in proteins remains an important topic in protein folding. This study describes experimental folding/unfolding equilibrium and kinetic studies of the engineered protein Ubq-UIM, consisting of ubiquitin (Ubq) fused to the sequence of the ubiquitin interacting motif (UIM) via a short linker. Urea-induced folding/unfolding profiles of Ubq-UIM were monitored by far-UV circular dichroism and fluorescence spectroscopies and compared to those of the isolated Ubq domain. It was found that the equilibrium data for Ubq-UIM is inconsistent with a two-state model. Analysis of the kinetics of folding shows similarity in the folding transition state ensemble between Ubq and Ubq-UIM, suggesting that formation of Ubq domain is independent of UIM. The major contribution to the stabilization of Ubq-UIM, relative to Ubq, was found to be in the rates of unfolding. Moreover, it was found that the kinetic m-values for Ubq-UIM unfolding, monitored by different probes (far-UV circular dichroism and fluorescence spectroscopies), are different; thereby, further supporting deviations from a two-state behavior. A thermodynamic linkage model that involves four states was found to be applicable to the urea-induced unfolding of Ubq-UIM, which is in agreement with the previous temperature-induced unfolding study. The applicability of the model was further supported by site-directed variants of Ubq-UIM that have altered stabilities of Ubq/UIM interface and/or stabilities of individual Ubq- and UIM-domains. All variants show increased cooperativity and one variant, E43N_Ubq-UIM, appears to behave very close to an equilibrium two-state.  相似文献   

16.
Protein Arrays in Functional Genome Research   总被引:1,自引:0,他引:1  
Whole-genome analyses become more and more necessary for pharmaceutical research. DNA chip hybridizations are an important tool for monitoring gene expression profiles during diseases or medical treatment. However, drug target identification and validation as well as an increasing number of antibodies and other polypeptides tested as potential drugs produce an increasing demand for genome-wide functional assays. Protein arrays are an important step into this direction. Peptide arrays and protein expression libraries are useful for the identification of antibodies and for epitope mapping. Antibody arrays allow protein quantification, protein binding studies, and protein phosphorylation assays. Tissue micro-arrays give a detailed information about the localization of macromolecules. More complex interactions can be addressed in cells spotted in array format. Finally, microfluidics chips enable us to describe the communication between cells in a tissue. In this review, possibilities, limitations and chances of different protein array techniques are discussed.  相似文献   

17.
18.
Identification and Comparison of Protein I in Chick and Rat Forebrain   总被引:2,自引:2,他引:0  
Abstract: Protein I has been identified and compared in membranes prepared from chick and rat forebrain. Based upon five criteria known to characterize protein I, namely, (1) its ability to serve as a substrate for both the cyclic AMP-dependent protein kinase and (2) the Ca2+-dependent, calmodulin-requiring protein kinase, (3) its ability to be extracted from membranes at low pH, (4) its characteristic pattern of digestion by collagenase, and (5) its existence as a basic protein, we have determined that although protein I of rat brain consists of the usual doublet polypeptides la and Ib, only a single chick forebrain polypeptide is detectable which possesses protein Mike properties.  相似文献   

19.
Summary The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.  相似文献   

20.
Protein folding and protein refolding.   总被引:7,自引:0,他引:7  
R Seckler  R Jaenicke 《FASEB journal》1992,6(8):2545-2552
The functional three-dimensional structure of proteins is determined solely by their amino acid sequences. Protein folding occurs spontaneously beginning with the formation of local secondary structure concomitant with a compaction of the molecule. Secondary structure elements subsequently interact to form subdomains and domains stabilized by tertiary interactions. Disulfide bond formation, and cis-trans isomerization of X-Pro peptide bonds, as the rate-limiting folding reactions, are enzymatically catalyzed during protein folding in the cell. Although folding of domains is fast enough to occur cotranslationally in vivo, such vectorial folding on the ribosome is not essential for attainment of the native structure of a protein. Slow steps on the pathway to the functional protein structure are docking reactions of domains, association of subunits, or reshuffling reactions at the oligomer level. Aggregation as a competing side reaction is prevented, and the kinetic partition between competing polypeptide folding and translocation reactions is regulated by chaperone proteins binding to incompletely folded polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号