首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trait's response to natural selection will reflect the nature of the inheritance mechanisms that mediate the transmission of variation across generations. The relative importance of genetic and nongenetic mechanisms of inheritance is predicted to be related to the degree of trait plasticity, with nongenetic inheritance playing a greater role in the cross‐generational transmission of more plastic traits. However, this prediction has never been tested. We investigated the influence of genetic effects and nongenetic parental effects in two morphological traits differing in degree of plasticity by manipulating larval diet quality within a cross‐generational split‐brood experiment using the seed beetle Callososbuchus maculatus. In line with predictions, we found that the more plastic trait (elytron length) is strongly influenced by both maternal and paternal effects whereas genetic variance is undetectable. In contrast, the less plastic trait (first abdominal sternite length) is not influenced by parental effects but exhibits abundant genetic variance. Our findings support the hypothesis that environment‐dependent parental effects may play a particularly important role in highly plastic traits and thereby affect the evolutionary response of such traits.  相似文献   

2.
3.
Plant–pollinator interactions provide ideal frameworks for studying interactions in plant communities. Despite the large potential influence of such interactions on plant community structure, biodiversity and evolutionary processes, we know surprisingly little about the relative importance of positive and negative interactions among plant species for pollinator attraction. Therefore, we explored the relationships between conspecific and heterospecific floral densities and the flower visitation rates of nine plant species mainly visited by bumble bees, and six plant species mainly visited by flies, in a temperate grassland, through stepwise multiple regressions. Significant relationships were interpreted as interactions for pollinator attraction. Our results revealed that positive intra- and interspecific interactions for pollinator attraction were far more frequent than negative ones. Seventeen interspecific interactions were revealed of which 14 were significantly positive, whereas three of four significant intraspecific interactions were positive. Seven species experienced only positive interactions and two species experienced only negative interactions. The results presented here indicate that negative interactions are not necessarily the dominant ecological interaction for pollination among plants within a community, and the study represents a straightforward approach to study intra- and interspecific interactions among multiple species within a community. We discuss which mechanisms may drive the positive interactions for pollinator attraction and whether this may result in facilitative effects on reproductive success. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Aim An emerging consensus in invasion ecology is that faster‐growing alien plant species tend to be more invasive than slower‐growing species. However, phylogenetic non‐independence and the precision of growth‐rate measures often remain unaccounted for in comparative studies. We tested whether global invasiveness was related to mean and maximum relative growth rate of 105 plant species (101 native and 4 introduced) commonly occurring in the UK. Location Global. Methods We combined a unique experimental dataset of relative growth rates (RGR) measured under standardized experimental conditions for plant species that occur widely in the UK with our global measures of invasiveness, which were the number of references in the Global Compendium of Weeds (GCW) and the number of world regions invaded. We weighted mean RGR measures per species by including variances of RGR in our analyses, and we also conducted analyses with and without phylogenetic structure, to account for potential phylogenetic non‐independence in RGR. Results We found a positive association between global invasiveness and maximum RGR. In addition, this association was not confounded by phylogenetic correlation, or by species seed mass. Main conclusions The results from this study suggest that faster‐growing species are more widespread at a global scale, adding support to other studies that suggest faster‐growing alien plant species tend to be more invasive in the introduced range.  相似文献   

5.
Plant strategies frequently vary from opportunistic pollination to specialization to single pollinators within the same community. Unraveling the proximate mechanisms that determine the degree of plant generalization to pollinators has become a primary goal of pollination ecology. Color signaling is a potentially important mechanism because it is well established that many pollinators use color stimuli to locate food items. Until now, studies on the importance of color signaling in structuring pollination networks have not considered floral coloration as it is perceived by pollinators. Here, we use a framework recently developed for network analyses to compare the relative importance of color matching (i.e. the degree of phenotypic matching between flower coloration and pollinators’ visual system) and other variables (phylogeny, co‐abundance and spatiotemporal overlap between plants and pollinators) for plant generalization. We analyzed 25 000 visits in three temperate regions. We show that color matching in combination with spatiotemporal overlap or co‐abundance significantly influences plant generalization in one of the three regions. We suggest that intense human activities in two regions have decreased the mean level of color matching, potentially disrupting the communication between plants and pollinators. This study illuminates how the sensory ecology of pollinators contributes to structure a highly diversified pollination network.  相似文献   

6.
Functional traits may help to explain the great variety of species performances in plant communities, but it is not clear whether the magnitude of trait values of a focal species or trait differences to co‐occurring species are key for trait‐based predictions. In addition, trait expression within species is often plastic, but this variation has been widely neglected in trait‐based analyses. We studied functional traits and plant biomass of 59 species in 66 experimental grassland mixtures of varying species richness (Jena Experiment). We related mean species performances (species biomass and relative yield RY) and their plasticities along the diversity gradient to trait‐based pedictors involving mean species traits (Tmean), trait plasticities along the diversity gradient (Tslope), extents of trait variation across communities (TCV; coefficient of variation) and hierarchical differences (Tdiff) and trait distances (absolute values of trait differences Tdist) between focal and co‐occurring species. Tmean (30–55%) and Tdiff (30–33%) explained most variation in mean species performances and their plasticities, but Tslope (20–25%) was also important in explaining mean species performances. The mean species traits and the trait differences between focal species and neighbors with the greatest explanatory power were related to plant size and stature (shoot length, mass:height ratios) and leaf photosynthetic capacity (specific leaf area, stable carbon isotopes and leaf nitrogen concentration). The contribution of trait plasticities in explaining species performances varied in direction (positive or negative) and involved traits related to photosynthetic capacity, nitrogen acquisition (nitrogen concentrations and stable isotopes) as well as structural stability (shoot carbon concentrations). Our results suggest that incorporating plasticity in trait expression as well as trait differences to co‐occurring species is critical for extending trait‐based analyses to understand the assembly of plant communities and the contribution of individual species in structuring plant communities.  相似文献   

7.
The relevance of intercropping, where two or more crop species are simultaneously grown on the same land space, is growing due to its potential for improving resource use and maintaining stable yields under variable weather conditions. However, the actual growth of intercropped species may differ resulting from the idiosyncratic effect of crop diversity, and with this, the realized benefits from intercrops are found to depend critically on the cultivar, species, management and environmental conditions. This study aimed to apply a trait-based approach, in which ecological niche spaces are defined through n-dimensional hypervolumes, to identify the contribution of species/cultivar, cultivation design (sole crop or intercrop) and management (low or high fertilization) to the trait diversity of four crop species, pea-barley and faba bean-wheat, when grown as sole crops and intercrops. Four traits were used as trait axes for the trait space analysis: canopy height, shoot biomass, tiller/node number, and grain yield. We found that trait spaces differed with crop species and cultivars, and whether they were grown as intercrops or sole crops. Trait spaces differed between high and low fertilization only for the cereals grown in the more productive site (i.e. Denmark). Species grown as intercrops had larger volumes than when grown as sole crops, as a result of trait plasticity. This response to intercropping was apparent in almost all the species grown in Sweden and Denmark, except for wheat in Denmark. The study demonstrated that individual species responded to intercropping compared to sole cropping through the plasticity of traits, which influenced the shape of the hypervolumes to divide up the trait space between the species. The findings are important in illustrating the plastic responses of arable crops, which are relevant for understanding the productivity of species grown in intercrops as compared to sole crops.  相似文献   

8.
植物的表型可塑性、异速生长及其入侵能力   总被引:2,自引:0,他引:2  
表型可塑性是指同一个基因型对不同环境响应产生不同表型的特性,特定性状的可塑性本身可以遗传,也可以接受选择而发生进化。植物个体的异速生长是指生物体某一特征的相对生长速率不等于第二种特征的相对生长速率的特性,该特性是由物种的遗传性决定的一种固定特征,植物往往朝着最佳的异速生长曲线进化。植物特定基因型在不同环境下,诸如生物量分配和种群几何学上的一些表型差异,既可由异速生长造成,也可由表型可塑性造成。植物本身的异速生长是一种"外观可塑性",而异速生长曲线的改变才是真正的可塑性。植物的表型可塑性、异速生长对于入侵植物的适应具有重要意义。干扰等异质性生境下表型可塑性成为物种生存扩散的有利性状,表型可塑性强的物种更有可能成为广布种。植物本身的异速生长特性或其异速生长曲线的改变都能影响其入侵能力。  相似文献   

9.
Estimating the relative suitability of different host plant species for herbivores is usually based on survival and growth parameters, neglecting other parameters such as resistance traits. Adding further complexity, host plant suitability may depend on environmental temperature. We here use the oligophagous pierid butterfly Pieris napi to investigate effects of temperature (during both the larval and the adult stage) and larval host plant species (Alliaria petiolata, Cardamine pratensis and Sinapis alba) on life history and adult stress resistance traits (resistance to desiccation and starvation). Environmental temperature affected all developmental traits: at the lower temperature development time and body mass increased. Temperature also affected adult stress resistance: desiccation and starvation resistance were higher at the lower adult temperature. When the same temperatures were used during larval development, effects on adult stress resistance traits were in the opposite direction. Host plants affected life history (larger body mass and faster development in larvae fed S. alba) and stress resistance traits (best performance in larvae fed A. petiolata) differently. Thus, the relative suitability of a host plant depended on the trait of the herbivore that is focused on and may be subject to local selection pressures. Although interactions with temperature were present for all traits, effect sizes were generally small.  相似文献   

10.
Trait exaggeration through sexual selection will tale place alongside other changes in phenotype. Exaggerated morphology might be compensated by parallel changes in traits that support, enhance or facilitate exaggeration: 'secondary sexual trait compensation' (SSTC). Alternatively, exaggeration might be realized at the expense of other traits through morphological trade-offs. For the most part, SSTC has only been examined interspecifically. For these phenomena to be important intraspecifically, the sexual trait must be developmentally integrated with the compensatory or competing trait. We studied developmental integration in two species with different development: the holometabolous beetle Onthophagus taurus and the hemimetabolous earwig Forficula auricularia. Male-dimorphic variation in trait exaggeration was exploited to expose both trade-offs and SSTC. We found evidence for morphological trade-offs in O. taurus, but no F. auricularia, supporting the notion that trade-offs are more likely in closed developmetal systems. However, we found these trade-offs were not limited solely to traits growing close together. Developmental integration of structures involved in SSTC were detected in both species. The developmental integration of SSTC was phenotypically plastic, such that the compensation for relatively larger sexual traits was greater in the exasperated male morphs. Evidence of intraspecific SSTC demands studies of the selective, genetic and developmental architecture of phenotypic integration.  相似文献   

11.
Effects of clonal integration on plant plasticity in Fragaria chiloensis   总被引:11,自引:0,他引:11  
Peter Alpert 《Plant Ecology》1999,141(1-2):99-106
The ability of clonal plants to transport substances between ramets located in different microsites also allows them to modify the plastic responses of individual ramets to local environmental conditions. By equalising concentrations of substances between ramets, physiological integration might decrease responses to local conditions. However, integration has also been observed to increase plasticity and induce novel plastic responses in ramets. To ask how integration modifies plant plasticity in the clonal herb, Fragaria chiloensis, ramets were given either low light and high nitrogen or high light and low nitrogen, simulating a pattern of resource patchiness in their native habitat. Ramets in contrasting light/nitrogen treatments were either connected or single. Effects of light/nitrogen and connection were measured at three levels of morphological organisation, the organ, the ramet, and the clonal fragment. Connection between ramets reduced or had no effect on plastic responses in leaf size at the level of the plant organ. This suggested that integration dampened certain plastic responses. Connection induced a new plastic response at the level of the clonal fragment, an increase in allocation to vegetative reproduction in patches of low light and high nitrogen. It is concluded that clonal integration can have different effects on plant plasticity at different levels of plant organisation. It appears that, at least in this species, integration can increase plasticity at the level of the clonal fragment and concentrate vegetative reproduction in particular microsite types.  相似文献   

12.
1. The structure of biological communities reflects the influence of both local environmental conditions and processes such as dispersal that create patterns in species’ distribution across a region. 2. We extend explicit tests of the relative importance of local environmental conditions and regional spatial processes to aquatic plants, a group traditionally thought to be little limited by dispersal. We used partial canonical correspondence analysis and partial Mantel tests to analyse data from 98 lakes and ponds across Connecticut (northeastern United States). 3. We found that aquatic plant community structure reflects the influence of local conditions (pH, conductivity, water clarity, lake area, maximum depth) as well as regional processes. 4. Only 27% of variation in a presence/absence matrix was explained by environmental conditions and spatial processes such as dispersal. Of the total explained, 45% was related to environmental conditions and 40% to spatial processes. 5. Jaccard similarity declined with Euclidean distance between lakes, even after accounting for the increasing difference in environmental conditions, suggesting that dispersal limitation may influence community composition in the region. 6. The distribution of distances among lakes where species occurred was associated with dispersal‐related functional traits, providing additional evidence that dispersal ability varies among species in ways that affect community composition. 7. Although environmental and spatial variables explained a significant amount of variation in community structure, a substantial amount of stochasticity also affects these communities, probably associated with unpredictable colonisation and persistence of the plants.  相似文献   

13.
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non‐fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co‐gradient variation whereby genetic differences and plasticity‐induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter‐gradient variation the majority seem to be hyperplastic whereby non‐native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non‐native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.  相似文献   

14.
15.
Local species richness can be affected by both the dispersal process and by environmental conditions (species sorting process). The evaluation of the relative roles of these two processes contributes not only to further understanding of the mechanisms determining species richness but also to biodiversity conservation. We studied the relative importance of hydrological dispersal and water chemistry for species richness of submerged and floating‐leaved macrophytes using 31 sets of interconnected ponds with different numbers of component ponds (defined as connection class). Connection class was slightly more important than, or equally important to, water chemistry in determining species richness of floating‐leaved macrophytes. In contrast, submerged macrophyte richness was much more influenced by water chemistry than by connection class, although increasing connection class had some positive effect. Similarly, the occurrence of a particular species of submerged macrophyte was better explained by pond water chemistry than by the occurrence of the same species in the pond immediately upstream. The reverse was true for floating‐leaved macrophytes; the presence of a given species was better explained by its presence in the pond immediately upstream than by water chemistry. These results indicated that the relative importance of the two processes that shape the species richness of aquatic plants is a consequence of the growth form of the plants. However, both the dispersal process via hydrologic connection and species sorting by water chemistry play some role in determining the species richness of both floating‐leaved and submerged macrophytes.  相似文献   

16.
Derived by endosymbiosis from ancestral cyanobacteria, chloroplasts integrated seamlessly into the biology of their host cell. That integration involved a massive transfer of genes to the cell's nucleus, with the modification of pre-existing processes, like plastid division and the operation of the plastid genetic machinery and the emergence of new ones, like the import of proteins translated in the cytoplasm. The uncovering in molecular detail of several of these processes reveals a merger of mechanisms of symbiont and host origin. Chloroplasts acquired roles as part of the biology of land plants by differentiating into a variety of interconvertible plastid forms according to the cell type. How these conversions take place, or how new problems, like the regulation of the plastid population size in cells, have been solved, is barely starting to be understood. Like the whole plant and as a result of the requirements and dangers associated with photosynthetic activity, chloroplasts in particular are under the control of environmental cues. Far from being passive targets of cellular processes, plastids are sources of signals of plastid-nuclear communication, which regulate activities for their own biogenesis. Plastids are also sources of developmental signals, in whose absence tissue architecture or cell differentiation are aberrant, in a cell-autonomous fashion. Over evolutionary time, plastids also contributed many genes for activities that are no longer directly associated with them (like light perception or hormone function). The overall picture is one in which plastids are at both the receiving and the acting ends in plant development, in both ontogenic and evolutionary terms.  相似文献   

17.
Community genetic studies generally ignore the plasticity of the functional traits through which the effect is passed from individuals to the associated community. However, the ability of organisms to be phenotypically plastic allows them to rapidly adapt to changing environments and plasticity is commonly observed across all taxa. Owing to the fitness benefits of phenotypic plasticity, evolutionary biologists are interested in its genetic basis, which could explain how phenotypic plasticity is involved in the evolution of species interactions. Two current ideas exist: (i) phenotypic plasticity is caused by environmentally sensitive loci associated with a phenotype; (ii) phenotypic plasticity is caused by regulatory genes that simply influence the plasticity of a phenotype. Here, we designed a quantitative trait loci (QTL) mapping experiment to locate QTL on the barley genome associated with barley performance when the environment varies in the presence of aphids, and the composition of the rhizosphere. We simultaneously mapped aphid performance across variable rhizosphere environments. We mapped main effects, QTL × environment interaction (QTL×E), and phenotypic plasticity (measured as the difference in mean trait values) for barley and aphid performance onto the barley genome using an interval mapping procedure. We found that QTL associated with phenotypic plasticity were co-located with main effect QTL and QTL×E. We also located phenotypic plasticity QTL that were located separately from main effect QTL. These results support both of the current ideas of how phenotypic plasticity is genetically based and provide an initial insight into the functional genetic basis of how phenotypically plastic traits may still be important sources of community genetic effects.  相似文献   

18.
19.
20.
The EICA‐hypothesis predicts that invading plants adapt to their novel environment by evolving increased performance and reduced resistance in response to the release from natural enemies, and assumes a resource allocation tradeoff among both trait groups as mechanistic basis of this evolutionary change. Using the plant Silene latifolia as a study system, we tested these predictions by investigating whether 1) invasive populations evolved lower resistance and higher performance, 2) this evolutionary change is indeed adaptive, and 3) there is a negative genetic correlation between performance and resistance (i.e. a tradeoff) in native and introduced individuals. Moreover, we sampled eight native and eight invasive populations and determined their population co‐ancestry based on neutral SSR‐markers. We performed controlled crossings to produce five sib‐groups per population and exposed them to increased and reduced levels of enemy attack in a full‐factorial experiment to estimate performance and resistance. With these data, we performed trait‐by‐trait comparisons between ranges with ‘animal models’ that account for population co‐ancestry to quantify the amount of variance in traits explained by non‐adaptive versus adaptive evolution. Moreover, we tested for genetic correlations among performance and resistance traits within sib‐groups. We found significant reductions in resistance and increases in performance in invasive versus native populations, which could largely be attributed to adaptive evolution. While we detected a non‐significant trend towards negative genetic performance × resistance correlations in native populations, invasive populations exhibited both significant and non‐significant positive correlations. In summary, these results do not support a shift of performance and resistance trait values along a tradeoff line in response to enemy release, as predicted by EICA. They rather suggest that the independent evolution of both traits is not constrained by a tradeoff, and that various selective agents (including resource availability) interact in shaping both traits and in weakening negative genetic correlations in the invaded habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号