首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subclinical levels of circulating endotoxin are associated with the pathogenesis of diverse human inflammatory diseases, by mildly inducing the expression of proinflammatory mediators. In this study, we examined the molecular mechanism responsible for the effect of low-dose LPS in macrophages. In contrast to high-dose LPS, which activates NF-κB and induces the robust expression of proinflammatory mediators, we observed that low-dose LPS failed to activate NF-κB. Instead, it selectively activated C/EBPδ and removed nuclear repressors, including peroxisome proliferator-activated receptor α and retinoic acid receptor α, enabling a mild and leaky expression of proinflammatory mediators. The effect of low-dose LPS required IRAK-1, which interacts with and acts upstream of IκB kinase ε to contribute to LPS-mediated induction of C/EBPδ and proinflammatory mediators. Additionally, mice fed a high-fat diet acquired elevated levels of endotoxin and proinflammatory mediators in an IRAK-1-dependent fashion. Taken together, these data reveal a distinct pathway preferentially used by low-dose endotoxin in initiating low-grade inflammation.  相似文献   

2.
In rheumatoid arthritis (RA), a chronic inflammatory disease, loss of muscle mass is an important contributor to the loss of muscle strength in RA patients. Myostatin, a myokine involved in the process of muscle hypertrophy and myogenesis, enhances osteoclast differentiation and inflammation. Here, we investigated the mechanisms of myostatin in RA synovial inflammation. We found a positive correlation between myostatin and tumor necrosis factor-α (TNF-α), a well-known proinflammatory cytokine, in RA synovial tissue. Our in vitro results also showed that myostatin dose-dependently induced TNF-α expression through the phosphatidylinositol 3-kinase (PI3K)–Akt–AP-1 signaling pathway. Myostatin treatment of human MH7A cells stimulated AP-1-induced luciferase activity and activation of the c-Jun binding site on the TNF-α promoter. Our results indicated that myostatin increases TNF-α expression via the PI3K–Akt–AP-1 signaling pathway in human RA synovial fibroblasts. Myostatin appears to be a promising target in RA therapy.  相似文献   

3.
4.
5.
Macrophages are the major cytokine producers in chronic inflammatory diseases, but the biochemical pathways regulating cytokine production are poorly understood. This is because genetic tools to dissect signaling pathways cannot be used in macrophages because of difficulties in transfection. We have developed an adenoviral technique to achieve high efficiency gene delivery into macrophages and recently showed that spontaneous TNF-alpha production in rheumatoid arthritis joint cells, chiefly from macrophages, is 75% blocked by adenoviral transfer of IkappaBalpha. In this report we use the same adenovirus to investigate whether the production of a number of proinflammatory cytokines (e.g., TNF-alpha, IL-1beta, IL-6, and IL-8) from human macrophages depends on NF-kappaB. While the cytokine response to certain inducers, such as LPS, PMA, and UV light, is blocked by overexpression of IkappaBalpha, the response to zymosan is not. In contrast, anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist) induced by LPS are only marginally inhibited by IkappaBalpha excess. These studies demonstrate several new points about macrophage cytokine production. First, there is heterogeneity of mechanisms regulating both the proinflammatory and anti-inflammatory cytokines within populations of a single cell type. In addition, the results confirm the utility of the adenoviral technique for functional analysis of cytokine induction. The results also confirm that there are autocrine and paracrine interactions regulating cytokine synthesis within a single cell type. The selectivity of NF-kappaB blockade for proinflammatory but not anti-inflammatory mediators indicates that in macrophages, NF-kappaB may be a good target for the treatment of chronic inflammatory diseases.  相似文献   

6.
7.
8.
9.
We have previously demonstrated that Lactobacillus reuteri CRL1098 soluble factors were able to reduce TNF-α production by human peripheral blood mononuclear cells. The aims of this study were to determine whether L. reuteri CRL1098 soluble factors were able to modulate in vitro the inflammatory response triggered by LPS in murine macrophages, to gain insight into the molecular mechanisms involved in the immunoregulatory effect, and to evaluate in vivo its capacity to exert anti-inflammatory actions in acute lung injury induced by LPS in mice. In vitro assays demonstrated that L. reuteri CRL1098 soluble factors significantly reduced the production of pro-inflammatory mediators (NO, COX-2, and Hsp70) and pro-inflammatory cytokines (TNF-α, and IL-6) caused by the stimulation of macrophages with LPS. NF-kB and PI3K inhibition by L. reuteri CRL1098 soluble factors contributed to these inhibitory effects. Inhibition of PI3K/Akt pathway and the diminished expression of CD14 could be involved in the immunoregulatory effect. In addition, our in vivo data proved that the LPS-induced secretion of the pro-inflammatory cytokines, inflammatory cells recruitment to the airways and inflammatory lung tissue damage were reduced in L. reuteri CRL1098 soluble factors treated mice, providing a new way to reduce excessive pulmonary inflammation.  相似文献   

10.
The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88−/− mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9±1.9-fold; P<0.001) and colonic tissue (7.0±2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1±2.5-fold vs. 1.6±0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.  相似文献   

11.
12.
Beurel E 《PloS one》2011,6(10):e25804
Inflammatory tolerance is a crucial mechanism that limits inflammatory responses in order to avoid prolonged inflammation that may damage the host. Evidence that chronic inflammation contributes to the neuropathology of prevalent neurodegenerative and psychiatric diseases suggests that inflammatory tolerance mechanisms are often inadequate to control detrimental inflammation in the central nervous system. Thus, identifying mechanisms that regulate neuroinflammatory tolerance may reveal opportunities for bolstering tolerance to reduce chronic inflammation in these diseases. Examination of tolerance after repeated lipopolysaccharide (LPS) treatment of mouse primary astrocytes demonstrated that histone deacetylase (HDAC) activity promoted tolerance, opposite to the action of glycogen synthase kinase-3 (GSK3), which counteracts tolerance. HDAC6 in particular was found to be critical for tolerance induction, as its deacetylation of acetyl-tubulin was increased during LPS tolerance, this was enhanced by inhibition of GSK3, and the HDAC6 inhibitor tubacin completely blocked tolerance and the promotion of tolerance by inhibition of GSK3. These results reveal opposing interactions between HDAC6 and GSK3 in regulating tolerance, and indicate that shifting the balance between these two opposing forces on inflammatory tolerance can obliterate or enhance tolerance to LPS in astrocytes.  相似文献   

13.
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.  相似文献   

14.
15.
Gould NS  Min E  Day BJ 《PloS one》2011,6(10):e25704
A number of inflammatory lung diseases have abnormally low glutathione (GSH) levels in the airway fluids. Lung macrophages are common mediators of inflammation, make up the majority of cells that are found in the airway epithelial lining fluid (ELF), and are commonly elevated in many lung diseases. Several animal models with altered ELF GSH levels are associated with similar alterations in the intracellular GSH levels of bronchoalveolar lavage (BAL) cells. The possible mechanisms and outcomes for this association between ELF GSH levels and intracellular BAL cell GSH are unknown. To investigate these issues, macrophages were grown in media supplemented with 500 μM GSH. GSH supplementation resulted in a 2-3 fold increase in macrophage intracellular GSH levels. The increase in macrophage intracellular GSH levels was associated with a significant reduction in NF-κB nuclear translocation and tumor necrosis factor α (TNFα) release upon LPS stimulation. Furthermore, co-treatment of macrophages with GSH and inhibitors of GSH breakdown or synthesis did not block GSH accumulation. In contrast, treatment with cytochalasin D, an inhibitor of actin dependent endocytosis, and amiloride, an inhibitor of macropinocytosis blocked, at least in part, GSH uptake. Furthermore, using two cigarette smoke exposure paradigms that result in two different GSH levels in the ELF and thus in the BAL cells resulted in modulation of cytokine release when stimulated with LPS ex vivo. These data suggest that macrophages are able to utilize extracellular GSH which can then modulate inflammatory signaling in response to proinflammatory stimuli. This data also suggests the lung can modulate inflammatory responses triggered by proinflammatory stimuli by altering ELF GSH levels and may help explain the dysregulated inflammation associated with lung diseases that have low ELF GSH levels.  相似文献   

16.
Periodontitis, an oral inflammatory disease caused by periodontal pathogen infection, is the most prevalent chronic inflammatory disease and a major burden on healthcare. The TAM receptor tyrosine kinases (Tyro3, Axl and Mertk) and their ligands (Gas6 and Pros1) play a pivotal role in the resolution of inflammation and have been associated with chronic inflammatory and autoimmune diseases. In this study, we evaluated the effects of exogenous Pros1 in in vitro and in vivo models of periodontitis. We detected higher Pros1 but lower Tyro3 levels in inflamed gingival specimens of periodontitis patients compared with healthy controls. Moreover, Pros1 was mostly localized in the gingival epithelium of all specimens. In cultured human gingival epithelial cells (hGECs), Porphyromonas gingivalis LPS (p.g‐LPS) stimulation down‐regulated Pros1 and Tyro3. Exogenous Pros1 inhibited p.g‐LPS–induced production of TNF‐α, IL‐6, IL‐1β, MMP9/2 and RANKL in a Tyro3‐dependent manner as revealed by PCR, Western blot analysis, ELISA and gelatin zymography. Pros1 also restored Tyro3 expression down‐regulated by p.g‐LPS in hGECs. In rats treated with ligature and p.g‐LPS, administration of Pros1 attenuated periodontitis‐associated gingival inflammation and alveolar bone loss. Our mechanistic studies implicated SOCS1/3 and STAT1/3 as mediators of the in vitro and in vivo anti‐inflammatory effects of Pros1. Collectively, the findings from this work supported Pros1 as a novel anti‐inflammatory therapy for periodontitis.  相似文献   

17.
Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE−/− mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE−/− mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation.  相似文献   

18.
Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases.  相似文献   

19.
The phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) axis plays a central role in attenuating inflammation upon macrophage stimulation with toll-like receptor (TLR) ligands. The mechanistic target of rapamycin complex 2 (mTORC2) relays signal from PI3K to Akt but its role in modulating inflammation in vivo has never been investigated. To evaluate the role of mTORC2 in the regulation of inflammation in vivo, we have generated a mouse model lacking Rictor, an essential mTORC2 component, in myeloid cells. Primary macrophages isolated from myeloid-specific Rictor null mice exhibited an exaggerated response to TLRs ligands, and expressed high levels of M1 genes and lower levels of M2 markers. To determine whether the loss of Rictor similarly affected inflammation in vivo, mice were either fed a high fat diet, a situation promoting chronic but low-grade inflammation, or were injected with lipopolysaccharide (LPS), which mimics an acute, severe septic inflammatory condition. Although high fat feeding contributed to promote obesity, inflammation, macrophage infiltration in adipose tissue and systemic insulin resistance, we did not observe a significant impact of Rictor loss on these parameters. However, mice lacking Rictor exhibited a higher sensitivity to sceptic shock when injected with LPS. Altogether, these results indicate that mTORC2 is a key negative regulator of macrophages TLR signalling and that its role in modulating inflammation is particularly important in the context of severe inflammatory challenges. These observations suggest that approaches aimed at modulating mTORC2 activity may represent a possible therapeutic approach for diseases linked to excessive inflammation.  相似文献   

20.
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) as a serious event has high mortality and medical costs. Systemic inflammation and immune response are the major factors influencing the outcome and quality of patient with AECOPD. On basis of identification and validation of AECOPD-specific inflammatory biomarkers, the present study aimed to identify AECOPD-specific immunomodulatory mediators by evaluating dynamic genomic and proteomic profiles of peripheral blood mononuclear cells (PBMCs) and plasma in patients with AECOPD on day 1, 3, and 10 after the hospital admission, to compare with healthy controls or patients with stable COPD. We found that genes and proteins of C1QC and C1RL were co-differentially up-expressed in patients with COPD or AECOPD, while haptoglobin (HP), ORM1, SERPING1, and C3 were identified as a panel of AECOPD-specific immunomodulatory mediators. We also found that inflammatory stimuli could up-regulate osteopontin (OPN)-associated HP expression through the PI3K signal pathway in A549 cells. Block of autocrine production of OPN by gene inhibition could reduce HP production from inflammation-induced lung epithelial cells. The complex network of AECOPD- or COPD-specific immunomodulatory mediators will benefit the development of precision or personalized medicine strategies for prevention and treatment of AECOPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号