首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 1-methyl-4-phenyl - 1,2,3,6-tetrahydropyridine (MPTP) on immune parameters, and the restorative influence of sodium diethyldithiocarbamate (DTC) or deprenyl were evaluated in mice. The concentrations of dopamine (DA), 3-methoxytyramine (3-MT), 3-4-dihydroxyphenyl acetic acid (DOPAC), and homovanillic acid (HVA), were concomitantly measured in the striatum. MPTP depressed T-cell responses. DTC restored these responses as well as the concentration of striatal DA. Deprenyl had no effect on the concentrations of DA and its metabolites, yet it modified the immune responses alike MPTP. The findings suggest a dopamine pathway could be involved in the brain-controlled immunostimulation afforded by DTC.  相似文献   

2.
Parkinson's disease (PD) is characterized by the loss of dopamine-producing neurons in the nigrostriatal system. Numerous researchers in the past have attempted to track the progression of dopaminergic depletion in PD. We applied a quantitative non-invasive PET imaging technique to follow this degeneration process in an MPTP-induced mouse model of PD. The VMAT2 ligand (18)F-DTBZ (AV-133) was used as a radioactive tracer in our imaging experiments to monitor the changes of the dopaminergic system. Intraperitoneal administrations of MPTP (a neurotoxin) were delivered to mice at regular intervals to induce lesions consistent with PD. Our results indicate a significant decline in the levels of striatal dopamine and its metabolites (DOPAC and HVA) following MPTP treatment as determined by HPLC method. Images obtained by positron emission tomography revealed uptake of (18)F-DTBZ analog in the mouse striatum. However, reduction in radioligand binding was evident in the striatum of MPTP lesioned animals as compared with the control group. Immunohistochemical analysis further confirmed PET imaging results and indicated the progressive loss of dopaminergic neurons in treated animals compared with the control counterparts. In conclusion, our findings suggest that MPTP induced PD in mouse model is appropriate to follow the degeneration of dopaminergic system and that (18)F-DTBZ analog is a potentially sensitive radiotracer that can used to diagnose changes associated with PD by PET imaging modality.  相似文献   

3.
In Parkinson's disease (PD) and experimental parkinsonism, losses of up to 60% and 80%, respectively, of dopaminergic neurons in substantia nigra, and dopamine (DA) in striatum remain asymptomatic. Several mechanisms have been suggested for this functional compensation, the DA-mediated being the most established one. Since this mechanism was recently challenged by striatal DA analysis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, we present data on several DAergic parameters in three groups of rhesus monkeys: MPTP-treated asymptomatic animals; symptomatic MPTP-treated animals with stable parkinsonism; and untreated sex and age matched controls. We determined ratios of striatal and nigral 3,4-dihydroxyphenyl acetic acid (DOPAC) to DA levels and tyrosine hydroxylase (TH) enzyme activity to DA levels, in addition to the commonly used homovanillic acid (HVA)/DA ratios which, as such, might be less reliable under the conditions of partial denervation. We found that in the asymptomatic MPTP monkeys the DOPAC/DA ratios in putamen and caudate nucleus were shifted with high statistical significance 1.9-5.8-fold, as compared to controls, the shifting of the ratios being in the same range as the 2.6-5.4-fold shifts in the symptomatic animals. Also TH/DA ratios were significantly increased in both, the asymptomatic and the symptomatic MPTP-treated monkeys, with shifts in the putamen and caudate nucleus of 3- and 2.7-7.0-fold, respectively. In the substantia nigra, DOPAC levels and TH activity were strongly decreased after MPTP (-77 to -97%), but the ratios DOPAC/DA and TH/DA were not changed in this brain region. Collectively, our findings support the concept of DAergic compensation of the progressive striatal DA loss in the presymptomatic stages of the parkinsonian disease process.  相似文献   

4.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride injected s.c. at 20 mg/kg once daily for four days resulted in marked depletion of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in mouse striatum one week after the last dose. Pretreatment with MD 240928, (R)-[4-((3-chlorophenyl)-methoxy)phenyl]-5-[(methylamino)methyl]-2- oxazolidinone methanesulfonate, prevented the depletion of striatal dopamine, DOPAC and HVA, whereas pretreatment with harmaline did not. MD 240928 selectively inhibited type B not type A monoamine oxidase (MAO), whereas harmaline selectively inhibited type A MAO in mouse striatum. Acutely after injection of harmaline, DOPAC and HVA concentrations were decreased in mouse striatum; these changes were not produced by MD 240928. The acute changes in dopamine metabolites reveal that MAO-A not MAO-B is responsible for the oxidation of dopamine in mouse striatum. Protection against the neurotoxic effects of MPTP by MD 240928 but not by harmaline indicates that prevention of dopamine oxidation is not the mechanism of the protective effect; instead the protection probably is due to prevention of MPTP metabolism by MAO-B, this metabolism having been shown to occur by other workers. The results with these reversible, competitive inhibitors of the two types of MAO are in agreement with previously reported results from studies using irreversible inhibitors of MAO.  相似文献   

5.
Single toxic doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).HCl (2.5 mg/kg i.v.) and 4'-amino-MPTP.2HCl (22.5 mg/kg) induce loss of striatal dopamine (DA) and tyrosine hydroxylase (TH) activity and of nigral DA neurons in the dog. To examine the subacute neurochemical changes induced by low doses of MPTP and 4'-amino-MPTP, dose-response studies of these compounds were carried out in the dog, using 6- and 3-week survival times for these two compounds, respectively. Low single doses of MPTP (1.0, 0.5, and 0.1 mg/kg i.v.) and 4'-amino-MPTP (15, 7.5, and 3.75 mg/kg i.v.) did not cause depletion of canine striatal DA or TH or a loss of nigral neurons. However, levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were decreased in a dose-related fashion, with significant loss of DOPAC being evident 6 weeks after the lowest administered dose of MPTP and 3 weeks after 4'-amino-MPTP. This selective loss of DA metabolites following nontoxic doses of MPTP and 4'-amino-MPTP led to a shift in the ratio of DA to DOPAC or HVA, which was characteristic for each compound. The measurement of striatal 1-methyl-4-phenylpyridinium (MPP+) and 4'-amino-MPP+ levels revealed that high concentrations (up to 150 microM) persist in the striatum for weeks following administration of a single nontoxic dose of MPTP or 4'-amino-MPTP. A causal relationship between the striatal concentration of MPP+ or 4'-amino-MPP+ and the change in DA metabolism as reflected in the DA/DOPAC ratio is suggested by a significant correlation between these measures. It is suggested that presynaptic sequestration and retention of MPP+ and 4'-amino-MPP+ by striatal DA terminals result in the inhibition of the monoamine oxidase contained within these terminals.  相似文献   

6.
The administration of amphetamine to rats pretreated with iprindole to inhibit the metabolism of amphetamine results in a long-lasting depletion of striatal dopamine and its metabolites, DOPAC and HVA. Pretreatment with MK801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) subclass of excitatory amino acid receptors, antagonized the depletion of striatal dopamine, DOPAC and HVA 3 days after a single dose of amphetamine in iprindole-treated rats. MK801 pretreatment was effective up to 4 hours but not at 8 or 24 hours in preventing amphetamine effects on striatal dopamine, DOPAC and HVA.  相似文献   

7.
Human β-endorphin administered intracisternally in a dose of 15 μg per rat increased striatal concentrations of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) as well as producing catalepsy. These effects were inhibited by naloxone. Pargyline-induced decreases in striatal DOPAC and HVA were greater in endorphin-treated than in saline-treated animals, supporting the concept that β-endorphin increases striatal dopamine turnover. β-endorphin increased the rate of decline in striatal dopamine concentration following synthesis inhibition with α-methyltyrosine, further suggesting that endorphin increases striatal dopamine turnover. β-endorphin and probenecid interacted competitively to decrease the effects of each other to increase striatal HVA. Naloxone prevented the effect of endorphin to decrease the HVA response to probenecid. Thus, probenecid cannot be used to assess the effects of endorphin on striatal dopamine turnover. If β-endorphin acts presynaptically to decrease dopamine release in striatum, the increases in striatal DOPAC and HVA probably represent a compensatory attempt to increase dopamine synthesis. Although turnover of dopamine to its metabolites is increased, dopamine release may be suppressed by β-endorphin.  相似文献   

8.
Abstract: The effects of estrogen on MPTP-induced neurotoxicity of the nigrostriatal dopaminergic system were examined in C57Bl and CD-1 mice. Ovariectomized mice with and without estrogen were treated with MPTP or its vehicle. The effects of these treatments on striatal dopamine concentrations and l -DOPA-stimulated dopamine and l -3,4-dihydroxyphenylacetic acid (DOPAC) release in vitro were determined. Dopamine concentrations of C57Bl mice receiving estrogen before MPTP were significantly greater than those of non-estrogen-treated MPTP mice as well as estrogen-treated mice receiving the MPTP vehicle. Dopamine concentrations of the CD-1 mice did not differ with these treatments. l -DOPA-evoked dopamine release values of estrogen-treated C57Bl mice were significantly increased compared with non-estrogen-treated mice. No such differences were observed in the MPTP-treated C57Bl mice. DOPAC release rates were similar to that of dopamine in these C57Bl mice. In the CD-1 mice estrogen also produced a significant increase in l -DOPA-evoked dopamine release; however, this response was unaltered by MPTP treatment. A significant increase in l -DOPA-evoked DOPAC output was obtained only for estrogen-treated CD-1 mice. Both strains show very similar responses to the estrogen treatment, but differential responses of dopamine release to l -DOPA between the C57Bl and CD-1 mice were obtained with regard to the interactive effects of estrogen and MPTP. Our results suggest that in addition to its role as modulator, estrogen may also function as a neuroprotectant against MPTP neurotoxicity of the nigrostriatal dopaminergic system in the C57Bl mouse.  相似文献   

9.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose etiology is not understood. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model is widely used for studying PD. The present study was undertaken to investigate the effect of hydroxysafflor yellow A (HSYA) on MPTP-induced neurotoxicity in mice. Pretreatment with HSYA at a dose of 2, 8 mg/kg for a week was followed by intraperitoneal injection with MPTP (30 mg/kg) for five consecutive days. Next, the subsequent behavior, biochemical index and immunohistochemical manifestations in mice were determined. Behavioral testing showed that MPTP-treated mice exhibited motor deficits but HSYA at dose of 8 mg/kg prevented the appearance of motor abnormalities. Treatment with HSYA at dose of 8 mg/kg attenuated the reduction of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in striatum. It also showed that the activity of SOD, catalase activity and GSH levels were significantly higher, while the levels of malondialdehyde (MDA) and hydroxyl radicals was lower, in the HSYA-treated mice compared to the MPTP-treated mice. The MPTP-treated mice exhibited the loss of tyrosine hydroxylase-containing dopaminergic neurons in substantia nigra. However, HSYA-treated mice showed a protective effect. Our results indicated that HSYA possesses neuroprotective effects and is a promising anti-Parkinson’s disease drug which is worthy of further study.  相似文献   

10.
A dialysis cannula implanted into rat striatum was perfused with Ringer's solution containing drugs. Levels of 3,4-dihydroxyphenyl-acetic acid (DOPAC) and homovanillic acid (HVA) in the dialysate or striatal tissue were determined by HPLC with electrochemical detection. Continuous perfusion of oxotremorine, a muscarinic agonist, for 4 h gradually increased the levels of DOPAC and HVA. The maximal levels of DOPAC and HVA were 180 and 130% of the basal ones, respectively. Perfusion of lobeline, a nicotinic agonist, caused a rapid increase in DOPAC level within I h (160% of the basal level) and HVA was 120% of the basal level for 4 h. In striatal tissue 20 min after starting perfusion of oxotremorine or lobeline, there were no changes in DOPAC and HVA measured except for a decrease in dopamine after lobeline. Pretreatment with tetrodotoxin suppressed the effect of oxotremorine, but did not suppress the effect of the lobeline. These data suggest that, in the rat striatum in vivo, most of the muscarinic receptors indirectly enhance the turnover of dopamine via striatonigral or other loops, while some of the nicotinic receptors directly enhance the release or turnover of dopamine in the dopamine nerve terminals.  相似文献   

11.
In neurodegenerative disorders such as Parkinson’s disease (PD), autophagy is implicated in the process of dopaminergic neuron cell death. The α-synuclein protein is a major component of Lewy bodies and Lewy neurites, and mutations in α-synuclein have been implicated in the etiology of familial PD. The current work investigates the mechanisms underlying the therapeutic effects of the autophagy-stimulating antibiotic rapamycin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Male C57BL/6 mice were treated with intravenous rapamycin or saline control for 7 days following MPTP administration. Immunohistochemistry and western blotting were used to detect alterations in the expression of PD biomarkers, including tyrosine hydroxylase (TH), and the level of autophagy was evaluated by the detection of both microtubule-associated protein light chain 3 (LC3) and α-Synuclein cleavage. In addition, levels of monoamine neurotransmitters were measured in the striatum using high performance liquid chromatography (HPLC). Immunohistochemistry using antibodies against TH indicated that the number of dopaminergic neurons in the substantia nigra following MPTP treatment was significantly higher in rapamycin-treated mice compared with saline-treated controls (p < 0.01). Levels of TH expression in the striatum were similar between the groups. α-synuclein Immunoreactivity was significantly decreased in rapamycin-treated mice compared with controls (p < 0.01). Immunoreactivity for LC3, however, was significantly higher in the rapamycin-treated animals than controls (p < 0.01). The concentrations of both striatal dopamine, and the dopamine metabolite DOPAC, were significantly decreased in both MPTP-treated groups compared with untreated controls. The loss of DOPAC was less severe in rapamycin-treated mice compared with saline-treated mice (p < 0.01) following MPTP treatment. These results demonstrate that treatment with rapamycin is able to prevent the loss of TH-positive neurons and to ameliorate the loss of DOPAC following MPTP treatment, likely via activation of autophagy/lysosome pathways. Thus, further investigation into the effectiveness of rapamycin administration in the treatment of PD is warranted.  相似文献   

12.
Persistent neurochemical changes consistent with parkinsonism have been reported in brains of mice treated with repeated high doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We now report that ethanol or acetaldehyde potentiate MPTP-induced damage to mouse striatum. One hour after the combined treatments (ethanol and MPTP or acetaldehyde and MPTP), the animals exhibited a marked and long-lasting catatonic posture and then returned gradually to apparently normal locomotion. Seven days after MPTP administration, depletion of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in mouse striatum were further potentiated in the group of animals treated with ethanol. This effect was more evident when the treatment was repeated twice and was dose-dependent. Acetaldehyde was more potent than ethanol in enhancing MPTP neurotoxicity. A single exposure to acetaldehyde before and during MPTP treatment produced a very consistent fall of DA, DOPAC and HVA but not serotonin (5HT) or 5-hydroxyindoleacetic acid (5HIAA) in the striatum. This suggests that ethanol effects on MPTP neurotoxicity might be related to acetaldehyde formation.  相似文献   

13.
Kim SN  Doo AR  Park JY  Bae H  Chae Y  Shim I  Lee H  Moon W  Lee H  Park HJ 《PloS one》2011,6(11):e27566
Parkinson's disease (PD) is caused by the selective loss of dopaminergic neurons in the substantia nigra (SN) and the depletion of striatal dopamine (DA). Acupuncture, as an alternative therapy for PD, has beneficial effects in both PD patients and PD animal models, although the underlying mechanisms therein remain uncertain. The present study investigated whether acupuncture treatment affected dopamine neurotransmission in a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that acupuncture treatment at acupoint GB34 improved motor function with accompanying dopaminergic neuron protection against MPTP but did not restore striatal dopamine depletion. Instead, acupuncture treatment increased dopamine release that in turn, may lead to the enhancement of dopamine availability in the synaptic cleft. Moreover, acupuncture treatment mitigated MPTP-induced abnormal postsynaptic changes, suggesting that acupuncture treatment may increase postsynaptic dopamine neurotransmission and facilitate the normalization of basal ganglia activity. These results suggest that the acupuncture-induced enhancement of synaptic dopamine availability may play a critical role in motor function improvement against MPTP.  相似文献   

14.
Monoamine oxidase isoform B (MAO-B) is involved in Parkinson's disease (PD) induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin (MPTP) in human and non-human-primate. MAO-B inhibitors, such as L-deprenyl have shown to prevent against MPTP-toxicity in different species, and it has been used in Parkinson therapy, however, the fact that it is metabolized to (-)-methamphetamine and (-)-amphetamine highlights the need to find out new MAO-B inhibitors without a structural amphetaminic moiety. In this context we herein report, for the first time, anywhere a novel non-amphetamine-like MAO-B inhibitor, PF 9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine. This attenuates the MPTP-induced striatal dopamine depletion in young-adult and adult-old C57/BL mice, using different schedules of administration, and which behave "ex vivo" as a slightly more potent and selective MAO-B inhibitor than L-deprenyl, assayed for comparative purposes in the same experimental conditions. The MAO-B ID(50) values were calculated from the total MAO-B activity measured against [14C] phenylethylamine (22 microM) as substrate, at each inhibitor concentration. The MAO-B ID(50) values resulted to be 381 and 577 nmol/kg for PF 9601N and L-deprenyl, respectively. The intraperitoneally (i.p.) co-administration to young-adult C57/BL6 mice of MPTP (30 mg/kg), with different concentrations of PF 9601N or L-deprenyl (29.5-0.357 micromol/kg) showed a dose-dependent protective effect against striatal dopamine depletion, measuring the dopamine contents and its metabolites by HPLC. The ED(50) value proved to be 3.07 micromol/kg without any significant differences between either MAO-B inhibitor. Nevertheless, lower doses of PF 9601N (1.5 micromol/kg) were necessary to get almost total protection, without any change in the DOPAC and HVA content, when administered 2 h before MPTP (30 mg/kg), whereas partial protection (45%) against dopamine depletion was observed in the case of L-deprenyl. In both cases, MAO-B inhibition was a necessary condition in order to observe the protective effect. When adult-old (8-10 months) C57/BL6 mice were used, MPTP (25 mg/kg) administration induced 25 days later, an irreversible dopamine depletion. In these conditions, chronic administration with 0.15 micromol/kg of PF 9601N, before the toxin, every 24 h for 10 days, rendered almost total protection of dopamine depletion, whereas L-deprenyl yielded only 50% protection of the dopamine content, assayed in the same conditions. It is worth remarking, that in both cases MAO-B was not affected. From these results, it can be concluded that PF 9601N attenuates MPTP neurotoxicity "in vivo" better than L-deprenyl through different mechanisms, with special relevance to the protective effect, independent of MAO-B inhibition, observed in the irreversibly MPTP-lesioned adult-old mice. Therefore, this novel non-amphetamine MAO-B inhibitor could be potentially effective in PD therapy.  相似文献   

15.
The noradrenergic neurons of the locus coeruleus (LC) are damaged in Parkinson's disease (PD). Neurotoxin ablation of the LC noradrenergic neurons has been shown to exacerbate the dopaminergic toxicity of MPTP, suggesting that the noradrenergic system protects dopamine neurons. We utilized mice that exhibit elevated synaptic noradrenaline (NA) by genetically deleting the noradrenaline transporter (NET), a key regulator of the noradrenergic system (NET KO mice). NET KO and wild-type littermates were administered MPTP and striatal dopamine terminal integrity was assessed by HPLC of monoamines, immmunoblotting for dopaminergic markers and tyrosine hydroxylase (TH) immunohistochemistry. MPTP significantly reduced striatal dopamine in wild-type mice, but not in the NET KO mice. To confirm that the protection observed in the NET KO mice was due to the lack of NET, we treated wild-type mice with the specific NET inhibitor, nisoxetine, and then challenged them with MPTP. Nisoxetine conferred protection to the dopaminergic system. These data indicate that NA can modulate MPTP toxicity and suggest that manipulation of the noradrenergic system may have therapeutic value in PD.  相似文献   

16.
L A Phebus  J A Clemens 《Life sciences》1989,44(19):1335-1342
Rat striatal extracellular fluid levels of dopamine, serotonin, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were measured before, during and after transient, global cerebral ischemia in awake rats using in vivo brain microdialysis. Before ischemia, extracellular levels of dopamine, DOPAC, HVA and 5-HIAA were detectable and consistent from sample to sample. During cerebral ischemia, there was a large increase in extracellular dopamine levels and a decrease in the extracellular levels of DOPAC, HVA, and 5-HIAA. During reperfusion, dopamine levels returned to normal as did those of DOPAC, HVA and 5-HIAA. Dialysate serotonin and 3-methoxytyramine concentrations were below detection limits except for samples collected during ischemia and early reperfusion.  相似文献   

17.
Microdialysis of the striatum of halothane-anesthetized rats was used to study the participation of local cholinergic and GABAergic neurotransmission in NMDA receptor-modulated striatal dopamine release and metabolism. Reverse dialysis.of NMDA (1 mM) evoked a 10-fold increase in dopamine efflux and reduced DOPAC and HVA to > 20% of basal values. The effect of NMDA on dopamine efflux was abolished by atropine (10 microM) but unaffected by (+)-bicuculline (50 microM). NMDA-induced decrease in DOPAC (but not HVA) efflux was potentiated by atropine, whereas (+)-bicuculline attenuated the decrease in DOPAC and HVA. Compared to our previous studies in unanesthetised rats, our data suggest that halothane anesthesia alters the balance between NMDA-stimulated cholinergic and GABAergic influences on striatal dopamine release and metabolism. Differential sensitivity to halothane of NMDA receptors expressed by the neurones mediating these modulatory influences, or loss of specific NMDA receptor populations through voltage-dependent Mg2+ block under anesthesia, could underlie these observations.  相似文献   

18.
Administration of methamphetamine (METH) to animals causes loss of DA terminals in the brain. The manner by which METH causes these changes in neurotoxicity is not known. We have tested the effects of this drug in copper/zinc (CuZn)-superoxide dismutase transgenic (SOD Tg) mice, which express the human CuZnSOD gene. In nontransgenic (non-Tg) mice, acute METH administration causes significant decreases in DA and dihydroxyphenylacetic acid (DOPAC) in the striata of non-Tg mice. In contrast, there were no significant decreases in striatal DA in the SOD Tg mice. The effects of METH on DOPAC were also attenuated in SOD Tg mice. Chronic METH administration caused decreases in striatal DA and DOPAC in the non-Tg mice, but not in the SOD-Tg mice. Similar studies were carried out with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP), which also causes striatal DA and DOPAC depletion. As in the case of METH, MPTP causes marked depletion of DA and DOPAC in the non-Tg mice, but not in the SOD Tg mice. These results suggest that the mechanisms of toxicity of both METH and MPTP involve superoxide radical formation.  相似文献   

19.
Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson’s disease (PD) patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in mice, a PD model. First, in a pre-treatment experiment male mice were treated for 10 days with the docosahexaenoic acid (DHA)-plasmalogen precursor PPI-1011 (10, 50 and 200 mg/kg). On day 5 mice received MPTP and were killed on day 11. Next, in a post-treatment study, male mice were treated with MPTP and then received daily for 5 days PPI-1011 (5, 10 and 50 mg/kg). MPTP treatment reduced serum plasmalogen levels, striatal contents of dopamine (DA) and its metabolites, serotonin, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). Pre-treatment with PPI-1011 (10 and 50 mg/kg) prevented all MPTP-induced effects. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding. Post-treatment with PPI-1011 prevented all MPTP-induced effects at 50 mg/kg but not at lower doses. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding in the post-treatment experiment. PPI-1011 treatment (10 days at 5, 10 and 50 mg/kg) of intact mice left unchanged striatal biogenic amine contents. These data demonstrate that treatment with a plasmalogen precursor is capable of protecting striatal dopamine markers in an animal model of PD.  相似文献   

20.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号