首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

2.
We mutated the vasoactive intestinal peptide (VIP) Asp(3) residue and two VPAC(1) receptor second transmembrane helix basic residues (Arg(188) and Lys(195)). VIP had a lower affinity for R188Q, R188L, K195Q, and K195I VPAC(1) receptors than for VPAC(1) receptors. [Asn(3)] VIP and [Gln(3)] VIP had lower affinities than VIP for VPAC(1) receptors but higher affinities for the mutant receptors; the two basic amino acids facilitated the introduction of the negatively charged aspartate inside the transmembrane domain. The resulting interaction was necessary for receptor activation. 1/[Asn(3)] VIP and [Gln(3)] VIP were partial agonists at VPAC(1) receptors; 2/VIP did not fully activate the K195Q, K195I, R188Q, and R188L VPAC(1) receptors; a VIP analogue ([Arg(16)] VIP) was more efficient than VIP at the four mutated receptors; and [Asn(3)] VIP and [Gln(3)] VIP were more efficient than VIP at the R188Q and R188L VPAC(1) receptors; 3/the [Asp(3)] negative charge did not contribute to the recognition of the VIP(1) antagonist, [AcHis(1),D-Phe(2),Lys(15),Arg(16),Leu(27)] VIP ()/growth hormone releasing factor (8-27). This is the first demonstration that, to activate the VPAC(1) receptor, the Asp(3) side chain of VIP must penetrate within the transmembrane domain, in close proximity to two highly conserved basic amino acids from transmembrane 2.  相似文献   

3.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

4.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

5.
The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40–Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.  相似文献   

6.
We have introduced targeted mutations in two areas that make up part of the RecA subunit interface. In the RecA crystal structure, cross-subunit interactions are observed between the Lys6 and Asp139 side-chains, and between the Arg28 and Asn113 side-chains. Unexpectedly, we find that mutations at Lys6 and Arg28 impose sever defects on the oligomeric stability of free RecA protein, whereas mutations at Asn113 or Asp139 do not. However, Lys6 and Arg28 mutant proteins showed an apparent normal formation of RecA-DNA complexes. These results suggest that cross-subunit contacts in this region of the protein are different for free RecA protein filaments versus RecA-DNA nucleoprotein filaments. Mutant proteins with substitutions at either Lys6 or Arg28 show partial inhibition of DNA strand exchange activity, yet the mechanistic reasons for this inhibition appear to be distinct. Although Lys6 and Arg28 appear to be more important to the stability of free RecA protein, as opposed to the stability of the catalytically active nucleoprotein filament, our results support the idea that the cross-subunit interactions made by each residue play an important role in optimizing the catalytic organization of the active RecA oligomer.  相似文献   

7.
Site-directed mutagenesis was carried out on the active site of water-soluble PQQ glucose dehydrogenase (PQQGDH-B) to improve its substrate specificity. Amino acid substitution of His168 resulted in a drastic decrease in the enzyme's catalytic activity, consistent with its putative catalytic role. Substitutions were also carried out in neighboring residues, Lys166, Asp167, and Gln169, in an attempt to alter the enzyme's substrate binding site. Lys166 and Gln169 mutants showed only minor changes in substrate specificity profiles. In sharp contrast, mutants of Asp167 showed considerably altered specificity profiles. Of the numerous Asp167 mutants characterized, Asp167Glu showed the best substrate specificity profile, while retaining most of its catalytic activity for glucose and stability. We also investigated the cumulative effect of combining the Asp167Glu substitution with the previously reported Asn452Thr mutation. Interpretation of the effect of the replacement of Asp167 to Glu on the alteration of substrate specificity in relation with the predicted 3D model of PQQGDH-B is also discussed.  相似文献   

8.
B*2701 differs from all other HLA-B27 subtypes of known peptide specificity in that, among its natural peptide ligands, arginine is not the only allowed residue at peptide position 2. Indeed, B*2701 is unique in binding many peptides with Gln2 in vivo. However, the mutation (Asp74Tyr) responsible for altered selectivity is far away from the B pocket of the peptide binding site to which Gln/Arg2 binds. Here, we present a model that explains this effect. It is proposed that a new rotameric state of the conserved Lys70 is responsible for the unique B*2701 binding motif. This side chain should be either kept away from pocket B through its interaction with Asp74 in most HLA-B27 subtypes, or switched to this pocket if residue 74 is Tyr as in B*2701. Involvement of Lys70 in pocket B would thus allow binding of peptides with Gln2. Binding of Arg2-containing peptides to B*2701 is also possible because Lys70 could adopt another conformation, H-bonded to Asn97, which preserves the same binding mode of Arg2 as in B*2705. This model was experimentally validated by mutating Lys70 into Ala in B*2701. Edman sequencing of the B*2701(K70A) peptide pool showed only Arg2, characteristic of HLA-B27-bound peptides, and no evidence for Gln2. This supports the computational model and demonstrates that allowance of B*2701 for peptides with Gln2 is due to the long-range effect of the polymorphic residue 74 of HLA-B27, by inducing a conformational switch of the conserved Lys70.  相似文献   

9.
Guan L  Nakae T 《Journal of bacteriology》2001,183(5):1734-1739
The MexABM efflux pump exports structurally diverse xenobiotics, utilizing the proton electrochemical gradient to confer drug resistance on Pseudomonas aeruginosa. The MexB subunit traverses the inner membrane 12 times and has two, two, and one charged residues in putative transmembrane segments 2 (TMS-2), TMS-4, and TMS-10, respectively. All five residues were mutated, and MexB function was evaluated by determining the MICs of antibiotics and fluorescent dye efflux. Replacement of Lys342 with Ala, Arg, or Glu and Glu346 with Ala, Gln, or Asp in TMS-2 did not have a discernible effect. Ala, Asn, or Lys substitution for Asp407 in TMS-4, which is well conserved, led to loss of activity. Moreover, a mutant with Glu in place of Asp407 exhibited only marginal function, suggesting that the length of the side chain at this position is important. The only replacements for Asp408 in TMS-4 or Lys939 in TMS-10 that exhibited significant function were Glu and Arg, respectively, suggesting that the native charge at these positions is required. In addition, double neutral mutants or mutants in which the charged residues Asp407 and Lys939 or Asp408 and Lys939 were interchanged completely lost function. An Asp408-->Glu/Lys939-->Arg mutant retained significant activity, while an Asp407-->Glu/Lys939-->Arg mutant exhibited only marginal function. An Asp407-->Glu/Asp408-->Glu double mutant also lost activity, but significant function was restored by replacing Lys939 with Arg (Asp407-->Glu/Asp408-->Glu/Lys939-->Arg). Taken as a whole, the findings indicate that Asp407, Asp408, and Lys939 are functionally important and raise the possibility that Asp407, Asp408, and Lys939 may form a charge network between TMS-4 and TMS-10 that is important for proton translocation and/or energy coupling.  相似文献   

10.
Effects of ionizable amino acids on spectroscopic properties and electron-transfer kinetics in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides are investigated by site-directed mutations designed to alter the electrostatic environment of the bacteriochlorophyll dimer that serves as the photochemical electron donor (P). Arginine residues at homologous positions in the L and M subunits (L135 and M164) are changed independently: Arg L135 is replaced by Lys, Leu, Glu, and Gln and Arg M164 by Leu and Glu. Asp L155 also is mutated to Asn, Tyr L164 to Phe, and Cys L247 to Lys and Asp. The mutations at L155, L164, and M164 have little effect on the absorption spectrum, whereas those at L135 and L247 shift the long-wavelength absorption band of P to higher energies. Fits to the ground-state absorption and hole-burned spectra indicate that the blue shift and increased width of the absorption band in the L135 mutants are due partly to changes in the distribution of energies for the zero-phonon absorption line and partly to stronger electron-phonon coupling. The initial electron-transfer kinetics are not changed significantly in most of the mutants, but the time constant increases from 3.0 +/- 0.2 in wild-type RCs to 4.7 +/- 0.2 in C(L247)D and 7.0 +/- 0.3 ps in C(L247)K. The effects of the mutations on the solvation free energies of the product of the initial electron-transfer reaction (P(+)) and the charge-transfer states that contribute to the absorption spectrum ( and ) were calculated by using a distance-dependent electrostatic screening factor. The results are qualitatively in accord with the view that electrostatic interactions of the bacteriochlorophylls with ionized residues of the protein are strongly screened and make only minor contributions to the energetics and dynamics of charge separation. However, the slowing of electron transfer in the Cys L247 mutants and the blue shift of the spectrum in some of the Arg L135 and Cys L247 mutants cannot be explained consistently by electrostatic interactions of the mutated residues with P and B(L); we ascribe these effects tentatively to structural changes caused by the mutations.  相似文献   

11.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

12.
The cardiac m2 muscarinic acetylcholine receptor (mAChR) is a sialoglycosylated transmembrane protein which has three potential sites for N-glycosylation (namely, Asn2, Asn3, and Asn6). To investigate the role of N-linked oligosaccharide(s) in the expression and function of the receptor, we constructed glycosylation-defective mutant receptor genes in which the three asparagine codons were substituted by codons for either aspartate (Asp2,3,6), lysine (Lys2,3,6), or glutamine (Gln2,3,6). The glycosylation-defective and wild-type receptor genes were stably expressed in Chinese hamster ovary cells. Binding experiments with the membrane-permeable radioligand [3H]quinuclidinyl-benzilate and the membrane-impermeable radioligand [3H]N-methylscopolamine revealed that the Asp2,3,6, Gln2,3,6, and wild-type receptors were located exclusively on the cell surface and expressed in similar numbers. The Lys2,3,6 mutant receptor was expressed at a relatively low level and was therefore not included in subsequent experiments. Wheat germ agglutinin-Sepharose chromatography and sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis demonstrated that the wild-type receptor, but not the Asp2,3,6 and Gln2,3,6 mutant receptors were N-glycosylated. The Asp2,3,6 and Gln2,3,6 mutant receptors had the same affinities for mAChR ligands as wild-type receptors. The time courses for degradation of the Asp2,3,6, Gln2,3,6, and wild-type receptors were also similar. In vivo functional analysis of the ability of the glycosylation mutant receptors to inhibit forskolin-stimulated cAMP accumulation revealed that maximal inhibition of adenylate cyclase activity was similar in the mutant and wild-type receptors. The Asp2,3,6 mutant receptor had an unaltered IC50 value for carbachol while the IC50 value of the Gln2,3,6 mutant receptor was 2-fold higher than that of the wild-type receptor. These results indicate that N-glycosylation of the m2 mAChR is not required for cell surface localization or ligand binding and does not confer increased stability against receptor degradation. Furthermore, N-glycosylation of the m2 mAChR is not required for functional coupling of the m2 mAChR to inhibition of adenylate cyclase.  相似文献   

13.
Johnson ET  Parson WW 《Biochemistry》2002,41(20):6483-6494
The effects of charge-charge interactions on the midpoint reduction potential (E(m)()) of the primary electron donor (P) in the photosynthetic reaction center of Rhodobacter sphaeroides were investigated by introducing mutations of ionizable amino acids at selected sites. The mutations were designed to alter the electrostatic environment of P, a bacteriochlorophyll dimer, without greatly affecting its structure or molecular orbitals. Two arginine residues at homologous positions in the L and M subunits [residues (L135) and (M164)], Asp (L155), Tyr (L164), and Cys (L247) were changed independently. Arginine (L135) was replaced by Lys, Leu, Gln, or Glu; Arg (M164), by Leu or Glu; Asp (L155), by Asn; Tyr (L164), by Phe; and Cys (L247), by Lys or Asp. The R(L135)E/C(L247)K double mutant also was made. The shift in the E(m)() of P/P(+) was measured in each mutant and was compared with the effect predicted by electrostatics calculations using several different computational approaches. A simple distance-dependent dielectric screening factor reproduced the effects remarkably well. By contrast, microscopic methods that considered the reaction field in the protein and solvent but did not include explicit counterions overestimated the changes in the E(m)() considerably. Including counterions for the charged residues reduced the calculated effects of the mutations in molecular dynamics calculations. The results show that electrostatic interactions of P with ionizable amino acid residues are strongly screened, and suggest that counterions make major contributions to this screening. The screening also could reflect penetration of water or other relaxations not taken into account because of incomplete sampling of configurational space.  相似文献   

14.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

15.
The chemotactic responses of bacteria such as Escherichia coli and Salmonella typhimurium are mediated by phosphorylation of the CheY protein. Phospho-CheY interacts with the flagellar motor switch to cause tumbly behavior. CheY belongs to a large family of phosphorylated response regulators that function in bacteria to control motility and regulate gene expression. Residues corresponding to Asp57, Asp13, and Lys109 in CheY are highly conserved among all of these proteins. The site of phosphorylation in CheY is Asp57, and in the three-dimensional structure of CheY the Asp57 carboxylate side chain is in close proximity to the beta-carboxylate of Asp13 and the epsilon-amin of Lys109. To further examine the roles of these residues in response regulator function, each has been mutated to a conservative substitution. Asn for Asp and Arg for Lys. All mutations abolished CheY function in vivo. Whereas the Asp to Asn mutations dramatically reduced levels of CheY phosphorylation, the Lys to Arg mutation had the opposite effect. The high level of phosphorylation in the Lys109 mutant results from a decreased autophosphatase activity as well as a lack of phosphatase stimulation by the phosphatase activating protein, CheZ. Despite its high level of phosphorylation, the Lys109 mutant protein cannot produce tumbly behavior. Thus, Lys109 is required for an event subsequent to phosphorylation. We propose that an interaction between the epsilon-amino of Lys109 and the phosphoryl group at Asp57 is essential for the conformational switch that leads to activation of CheY.  相似文献   

16.
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk.  相似文献   

17.

Background

Potential xeroderma pigmentosum group D (XPD), also called excision repair cross-complimentary group two (ERCC2), Lys751Gln and Asp312Asn polymorphisms have been implicated in gastric cancer risk among different ethnicities.

Methods

We aimed to explore the effect of XPD Lys751Gln and Asp312Asn polymorphisms on the susceptibility to gastric cancer among different ethnicities through a systematic review and meta-analysis. Each initially included article was scored for quality appraisal. Desirable data were extracted and registered into databases. 13 studies were ultimately eligible for the meta-analysis of Lys751Gln polymorphism and 9 studies for the meta-analysis of Asp312Asn polymorphism. We adopted the most probably appropriate genetic model (recessive model) for both Lys751Gln and Asp312Asn polymorphisms. Potential sources of heterogeneity were sought out via subgroup and sensitivity analyses, and publication biases were estimated.

Results

Statistically significant findings were apparently noted in Asians but not in Caucasians for both XPD Lys751Gln and XPD Asp312Asn polymorphisms. A statistically significant finding could be seen in noncardia-type gastric cancer for XPD Lys751Gln polymorphism. A statistically significant finding could also be seen in high quality subgroup, small-and-moderate sample size subgroup, articles published after 2007, or PCR-RFLP genotyping subgroup for XPD Asp312Asn polymorphism.

Conclusions

Our meta-analysis indicates that XPD Gln751Gln (CC) genotype and Asn312Asn (AA) genotype may seem to be more susceptible to gastric cancer in Asian populations but not in Caucasian populations, suggesting that the two genotypes may be important biomarkers of gastric cancer susceptibility for Asian populations, the assumption that needs to be further confirmed in well-designed studies among different ethnicities. Gln751Gln (CC) genotype may also be associated with noncardia-type gastric cancer risk, which should also be confirmed among different ethnicities in the future.  相似文献   

18.
Aquaporin (AQP) folding in the endoplasmic reticulum is characterized by two distinct pathways of membrane insertion that arise from divergent residues within the second transmembrane segment. We now show that in AQP1 these residues (Asn49 and Lys51) interact with Asp185 at the C terminus of TM5 to form a polar, quaternary structural motif that influences multiple stages of folding. Asn49 and Asp185 form an intramolecular hydrogen bond needed for proper helical packing, monomer formation and function. In contrast, Lys51 interacts with Asp185 on an adjacent monomer to stabilize the AQP1 tetramer. Although these residues are unique to AQP1, they share a highly conserved architecture whose functional properties can be transferred to other family members. These findings suggest a general mechanism by which evolutionary divergence of membrane proteins can confer new functional properties via alternative folding pathways that give rise to a common final structure.  相似文献   

19.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

20.
The crystal structure of the human cystatin C (hCC) dimer revealed that a stable twofold-symmetric dimer was formed via 3D domain swapping. Domain swapping with the need for near-complete unfolding has been proposed as a possible route for amyloid fibril initiation. Thus, the interesting interactions that occur between the two molecules may be important for the further aggregation of the protein. In this work, we performed steered molecular dynamics (SMD) simulations to investigate the dissociation of the β2 and β3 strands in the hCC dimer. The energy changes observed during the SMD simulations showed that electrostatic interactions were the dominant interactions involved in stabilizing the two parts of the dimer during the early stages of SMD simulation, whereas van der Waals (VDW) interactions and electrostatic interactions were equally matched during the latter stages. Furthermore, our data indicated that the two parts of the dimer are stabilized by intermolecular hydrogen bonds among the residues Arg51 (β2), Gln48 (β2), Asp65 (β3), and Glu67 (β3), salt bridges among the residues Arg53 (β2), Arg51 (β2), and Asp65 (β3), and VDW interactions among the residues Gln48 (β2), Arg51 (β2), Glu67 (β3), Asp65 (β3), Phe63 (β3), and Asn61 (β3). The residues Gln48 (β2), Arg51 (β2), Asp65 (β3) and Glu67 (β3) appear to be crucial, as they play important roles in both electrostatic and VDW interactions. Thus, the present study determined the key residues involved in the stabilization of the domain-swapped dimer structure, and also provided molecular-level insights into the dissociation process of the hCC dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号