首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC isolates were classified by phylogenetic group and possession of 67 other traits, including virulence-associated genes and plasmid replicon types. These ExPEC isolates included 452 avian pathogenic E. coli strains from avian colibacillosis, 91 neonatal meningitis E. coli (NMEC) strains causing human neonatal meningitis, and 531 uropathogenic E. coli strains from human urinary tract infections. Cluster analysis of the data revealed that most members of each subpathotype represent a genetically distinct group and have distinguishing characteristics. However, a genotyping cluster containing 108 ExPEC isolates was identified, heavily mixed with regard to subpathotype, in which there was substantial trait overlap. Many of the isolates within this cluster belonged to the O1, O2, or O18 serogroup. Also, 58% belonged to the ST95 multilocus sequence typing group, and over 90% of them were assigned to the B2 phylogenetic group typical of human ExPEC strains. This cluster contained strains with a high number of both chromosome- and plasmid-associated ExPEC genes. Further characterization of this ExPEC subset with zoonotic potential urges future studies exploring the potential for the transmission of certain ExPEC strains between humans and animals. Also, the widespread occurrence of plasmids among NMEC strains and members of the mixed cluster suggests that plasmid-mediated virulence in these pathotypes warrants further attention.  相似文献   

2.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.  相似文献   

3.
Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening.  相似文献   

4.
Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations.  相似文献   

5.
Neonatal Meningitis Escherichia coli (NMEC) is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC’s survival in the host’s low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome.  相似文献   

6.
Beta-glucuronidase-negative, sorbitol-nonfermenting isolates of Shiga toxin-producing Escherichia coli O157 comprise part of a clone complex of related enterohemorrhagic E. coli isolates. High-resolution genotyping shows that the O157 populations have diverged into two different lineages that appear to have different ecologies. To identify genomic regions unique to the most common human-associated genotype, suppression subtractive hybridization was used to identify DNA sequences present in two clinical strains representing the human lineage I O157:H7 strains but absent from two bovine-derived lineage II strains. PCR assays were then used to test for the presence of these regions in 10 lineage I strains and 20 lineage II strains. Twelve conserved regions of genomic difference for lineage I (CRD(I)) were identified that were each present in at least seven of the lineage I strains but absent in most of the lineage II strains tested. The boundaries of the lineage I conserved regions were further delimited by PCR. Eleven of these CRD(I) were associated with E. coli Sakai S-loops 14, 16, 69, 72, 78, 82, 83, 91 to 93, 153, and 286, and the final CRD(I) was located on the pO157 virulence plasmid. Several potential virulence factors were identified within these regions, including a putative hemolysin-activating protein, an iron transport system, and several possible regulatory genes. Cluster analysis based on lineage I conserved regions showed that the presence/absence of these regions was congruent with the inferred phylogeny of the strains.  相似文献   

7.
Escherichia coli was isolated from wild and captive Japanese macaques (Macaca fuscata) to investigate the risk of zoonotic infections and the prevalence of antimicrobial-resistant Escherichia coli in the wild macaque population in Shimokita Peninsula, a rural area of Japan. We collected 265 fresh fecal samples from wild macaques and 20 samples from captive macaques in 2005 and 2006 for E. coli isolation. The predominant isolates were characterized by serotyping, virulence gene profiling, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and microbial sensitivity tests. In total, 248 E. coli strains were isolated from 159 fecal samples from wild macaques, and 42 E. coli were isolated from 17 samples from captive macaques. None of the virulence genes eae, stx, elt, and est were detected in any of the isolates. The relatedness between wild- and captive-derived isolates was low by serotyping, PFGE, and plasmid profiling. Serotypes O8:H6, O8:H34, O8:H42, O8:HUT, O103:H27, O103:HNM, and OUT:H27 were found in wild macaque feces; serotypes O157:H42 and O119:H21 were recovered from captive macaques. O-and H-serotypes of the 26 isolates were not typed by commercial typing antisera and were named OUT and HUT, respectively. Twenty-eight isolates had no flagellar antigen, and their H-serotypes were named HNM. Similarity of PFGE patterns between wild-derived isolates and captive-derived isolates was <70%. No plasmid profile was shared between wild-derived and captive-derived isolates. The prevalence of antimicrobial-resistant E. coli was 6.5% (n=62) in wild macaques, and these isolates were resistant to cephalothin. We conclude that wild Japanese macaques in Shimokita Peninsula were unlikely to act as a reservoir of pathogenic E. coli for humans and that antimicrobial-resistant E. coli in wild macaques may be derived from humans.  相似文献   

8.
To identify novel virulence-associated genes in uropathogenic Escherichia coli (UPEC) strains, a suppression subtractive hybridization strategy was applied to genomic DNA of four clinical UPEC isolates from patients suffering from cystitis or pyelonephritis. The genomic DNA of four isolates (tester strains) was subtracted from the DNA of two different driver strains, the well characterized UPEC strain CFT073 and the non-pathogenic E. coli K-12 strain MG1655. We determined the sequence of 172 tester strain-specific DNA fragments, 86 of which revealed only low or no homology to nucleotide sequences of public databases. We further determined the virulence association of the 86 novel DNA fragments using each DNA fragment as a probe in Southern hybridizations of a reference strain collection consisting of 60 extraintestinal pathogenic E. coli isolates, and 40 non-virulent E. coli strains from stool samples. From this, 19 novel DNA fragments were demonstrated to be significantly associated with virulent strains and thus may represent new virulence traits. Our results support the idea of a considerable genetic variability among UPEC strains and suggest that novel genomic determinants might contribute to virulence of UPEC.  相似文献   

9.
Escherichia coli is the principal gram-negative causative agent of sepsis and meningitis in neonates. The pathogenesis of meningitis due to E. coli K1 involves mucosal colonization, transcytosis of epithelial cells, survival in the blood stream and eventually invasion of the meninges. The latter two aspects have been well characterized at a molecular level in the last decade. Less is known about the early stages of pathogenesis, i.e. adhesion to and invasion of gastrointestinal cells. Here, the characterization of the Hek protein is reported, which is expressed by neonatal meningitic E. coli (NMEC) and is localized to the outer membrane. It is demonstrated that this protein can cause agglutination of red blood cells and can mediate autoaggregation. Escherichia coli expressing this protein can adhere to and invade epithelial cells. So far, this is the first outer membrane protein in NMEC to be directly implicated in epithelial cell invasion.  相似文献   

10.
We undertook an epidemiologic study for the sensitivity of both Shiga-like toxin (Slt)-producing Escherichia coli (STEC) O157 and non-STEC O157 strains isolated from different patients with diarrhea to hydrochloric acid (HCl) and organic acids such as acetate, propionate, butyrate and lactate, and other pathogenic factors. The E. coli O157 isolates examined showed a wide variety of organic-acid susceptibility patterns. E. coli O157 isolates resistant to HCl or acetate were found more frequently than those resistant to other organic acids. These isolates also showed diverse pathogenicity patterns for the presence of the virulence genes, antibiotic susceptibility and plasmid profile.  相似文献   

11.
Cattle can be a reservoir of sorbitol-fermenting Escherichia coli O157 (SF E. coli O157) and a source of human diseases. In this study, six strains of SF E. coli O157 were isolated and characterized from cattle using an immunomagnetic separation procedure. PCR analysis of the SF E. coli O157 virulence markers showed that all six isolates tested positive for sfpA, rfbE and eaeA, and negative for terA, ureA, katP and espP. Two of the isolates contained the stx genes. Four isolates tested positive for enterohemorrhagic E. coli hlyA (EhlyA) by PCR but were nonhemolytic on the blood agar. Five isolates tested positive for the cdtA gene. The possession of these virulence factors was an indication of their pathogenic potential. The random amplified polymorphic DNA patterns, which were generated by the arbitrarily primed PCR of the SF E. coli O157 isolates from the cattle, were significantly different from those of the non-sorbitol-fermenting E. coli O157 (NSF E. coli O157) strains originating from cattle or humans. GelCompar analysis showed that the SF E. coli O157 isolates had only a 57% genetic similarity with the NSF E. coli strains. The minimal inhibitory concentration assay showed that imipenem inhibited the growth of the six isolates at a concentration of <4 microg/ml.  相似文献   

12.
AIMS: To assess the presence of virulence genes in environmental and foodborne Escherichia coli isolates using the TaqMan PCR system. METHODS AND RESULTS: Three TaqMan pathogen detection kits called O157:H7, StxI and StxII were used to investigate the presence of virulence genes in Escherichia coli isolates. All 54 foodborne E. coli O157:H7 isolates showed expected results using these kits. Ninety (15%) of 604 environmental isolates gave positive amplification with an O157:H7-specific kit. TaqMan PCR amplification products from these 90 isolates were analysed by agarose gel electrophoresis, and 90% (81 of 90) of the environmental samples contained the expected PCR product. Sixty-six of these 90 were chosen for serotyping tests and only 35% (23 of 66) showed agglutination with both anti-O157 and anti-H7 antibodies. Further ribotyping of 16 sero-positive isolates in an automated Riboprinter did not identify these to be O157:H7. Multiplex PCR with primers for eaeA, stxI and stxII genes was used to confirm the TaqMan results in 10 selected environmental isolates. CONCLUSIONS: All three TaqMan pathogen detection kits were useful for virulence gene analysis of prescreened foodborne O157:H7 isolates, while the O157:H7-specific kit may not be suitable for virulence gene analysis of environmental E. coli isolates, because of high false positive identification. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to rapidly identify the presence of pathogenic E. coli in food or environmental samples is essential to avert outbreaks. These results are of importance to microbiologists seeking to use TaqMan PCR to rapidly identify pathogenic E. coli in environmental samples. Furthermore, serotyping may not be a reliable method for identification of O157:H7 strains.  相似文献   

13.
The prevalence of enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) E. coli strains in stool specimens from asymptomatic human carriers working in the canteens and also in the kitchen and sanitary facilities was evaluated. The E. coli genes coding for the following virulence markers: intimin (eae), enterohaemolysin (hlyA), and verotoxins type I and II (stx1 and stx2) were sought by multiplex PCR assay. E. coli isolates were obtained from 144 stool specimens, 295 swabs taken from kitchen hardware and surrounding facilities, and from 33 meat specimens. Only 66 (8.5%) of total 777 E. coli isolates belonged to O44, O18, O25, O127, O55, O114, O125, and O142 serogroups, the prevalent serogroups in Poland. None of the strains was classified as serogroup O157. The serogroups O44 and O18 were present most often among all typeable strains and their incidence was 51.5% and 25.8% respectively. Among 363 isolates assayed for the presence of the genes encoding virulence markers only 10 isolates (2.8%) carried eae gene. None of the isolates possessing eae gene belonged to the serogroups tested. The hlyA, stx1 and stx2 genes were absent in all E. coli isolates tested.  相似文献   

14.
We identified Shiga toxin gene (stx)-negative Escherichia coli O26:H11 and O26:NM (nonmotile) strains as the only pathogens in the stools of five patients with hemolytic-uremic syndrome (HUS). Because the absence of stx in E. coli associated with HUS is unusual, we examined the strains for potential virulence factors and interactions with microvascular endothelial cells which are the major targets affected during HUS. All five isolates possessed the enterohemorrhagic E. coli (EHEC)-hlyA gene encoding EHEC hemolysin (EHEC-Hly), expressed the enterohemolytic phenotype, and were cytotoxic, in dose- and time-dependent manners, to human brain microvascular endothelial cells (HBMECs). Significantly reduced cytotoxicity in an EHEC-Hly-negative spontaneous derivative of one of these strains, and a dose- and time-dependent cytotoxicity of recombinant E. coli O26 EHEC-Hly to HBMECs, suggest that the endothelial cytotoxicity of these strains was mediated by EHEC-Hly. The toxicity of EHEC-Hly to microvascular endothelial cells plausibly contributes to the virulence of the stx-negative E. coli O26 strains and to the pathogenesis of HUS.  相似文献   

15.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

16.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) in Japan was examined by using stool samples from 87 calves, 88 heifers, and 183 cows on 78 farms. As determined by screening with stx-PCR, the prevalence was 46% in calves, 66% in heifers, and 69% in cows; as determined by nested stx-PCR, the prevalence was 100% in all animal groups. Of the 962 isolates picked by colony stx hybridization, 92 isolates from 54 farms were characterized to determine their O serogroups, virulence factor genes, and antimicrobial resistance. Of these 92 isolates, 74 (80%) could be classified into O serogroups; 50% of these 74 isolates belonged to O serogroups O8, O26, O84, O113, and O116 and 1 isolate belonged to O serogroup O157. Locus of enterocyte effacement genes were detected in 24% of the isolates, and enterohemorrhagic E. coli (EHEC) hlyA genes were detected in 72% of the isolates. Neither the bundle-forming pilus gene nor the enteropathogenic E. coli adherence factor plasmid was found. STEC strains with characteristics typical of isolates from human EHEC infections, which were regarded as potential EHEC strains, were present on 11.5% of the farms.  相似文献   

17.
Escherichia coli isolates from 217 children in Myanmar with diarrhea were investigated for the presence of virulence genes related to diarrhea by colony hybridization and PCR. The genes examined were lt, stI, stII, stx1, stx2, eae, bfp, pCVD (which is the representative gene of plasmid of pCVD of EAEC), and ial (which is invasion-associated locus of the invasion plasmid found in EIEC). Isolates from 47 of 217 children (21.7%) possessed virulence genes characteristic of diarrheagenic E. coli. No instance was found of co-existence of different E. coli strains with different virulence genes in the same patient. Diarrheagenic E. coli are currently classified into five categories based on their virulence markers: ETEC, EHEC, EPEC, EAEC, and EIEC. Of the 47 isolates examined, 30 were EAEC, 12 were EPEC and 5 were ETEC. Susceptibility tests for antimicrobial agents showed that almost all diarrheagenic isolates were resistant to penicillin, tetracycline and streptomycin. However, the majority of strains were sensitive to cephalexin, nalidixic acid and norfloxacin. In particular, 42 of the 47 isolates were sensitive to norfloxacin, which is a fluoroquinolone. This study shows EAEC and EPEC are responsible for sporadic diarrhea in Myanmar and fluoroquinolones appear to be effective in the treatment of these patients.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) of serotype O157:H7 has been implicated in food-borne illnesses worldwide. An evolutionary model was proposed in which the highly pathogenic EHEC O157:H7 serotype arose from its ancestor, enteropathogenic E. coli (EPEC) O55:H7 (sorbitol fermenting [SOR(+)] and β-glucuronidase positive [GUD(+)]), through sequential gain of virulence, phenotypic traits, and serotype change. Here we report six draft genomes of strains belonging to this evolutionary model: two EPEC O55:H7 (SOR(+) GUD(+)) strains, two nonmotile EHEC O157:H(-) strains (SOR(+) GUD(+)) containing plasmid pSFO157, one EHEC O157:H7 (SOR(-) GUD(+)) strain, and one O157:H7 strain containing plasmid pSFO157 (SOR(+) GUD(+)).  相似文献   

19.
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.  相似文献   

20.
Aims:  To identify, clone and sequence the iss (increased serum survival) gene from E. coli strain χ1378 isolated from Iranian poultry and to predict its protein product, Iss.
Methods and Results:  The iss gene from E. coli strain χ1378 was amplified and cloned into the pTZ57R/T vector and sequenced. From the DNA sequence, the Iss predictive protein was evaluated using bioinformatics. Iss from strain χ1378 had 100% identity with other E. coli serotypes and isolates from different origins and also 98% identity with E. coli O157:H7 Iss protein. Phylogenetic analysis showed no significant different phylogenic groups among E. coli strains.
Conclusions:  The strong association of predicted Iss protein among different E. coli strains suggests that it could be a good antigen to control and detect avian pathogenic E. coli (APEC).
Significance and Impact of the study:  Because the exact pathogenesis and the role of virulence factors are unknown, the Iss protein could be used as a target for vaccination in the future, but further research is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号