首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Rab9 is a small GTPase that localizes to the trans‐Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose‐6‐phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation‐independent (CI‐MPR) away from the Golgi yet, has no effect on the retrograde transport of CI‐MPR. We also show that CI‐MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5‐positive, and late, Rab7a‐positive, endosomes. CI‐MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI‐MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI‐MPR to the endosomal pathway, entering the maturing endosome at the early‐to‐late transition.   相似文献   

2.
Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome‐lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co‐localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA‐Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ‐BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein‐sorting (HOPS) complex hampered the co‐localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.   相似文献   

3.
Structural basis for recruitment of RILP by small GTPase Rab7   总被引:1,自引:0,他引:1  
Wu M  Wang T  Loh E  Hong W  Song H 《The EMBO journal》2005,24(8):1491-1501
Rab7 regulates vesicle traffic from early to late endosomes, and from late endosomes to lysosomes. The crystal structure of Rab7-GTP in complex with the Rab7 binding domain of RILP reveals that Rab7 interacts with RILP specifically via two distinct areas, with the first one involving the switch and interswitch regions and the second one consisting of RabSF1 and RabSF4. Disruption of these interactions by mutations abrogates late endosomal/lysosomal targeting of Rab7 and RILP. The Rab7 binding domain of RILP forms a coiled-coil homodimer with two symmetric surfaces to interact with two separate Rab7-GTP molecules, forming a dyad configuration of Rab7-RILP(2)-Rab7. Mutations that disrupt RILP dimerization also abolish its interactions with Rab7-GTP and late endosomal/lysosomal targeting, suggesting that the dimeric form of RILP is a functional unit. Structural comparison suggests that the combined use of RabSF1 and RabSF4 with the switch regions may be a general mode of action for most Rab proteins in regulating membrane trafficking.  相似文献   

4.
Neuronal nicotinic alpha7 subunits assemble into cell-surface complexes that neither function nor bind alpha-bungarotoxin when expressed in tsA201 cells. Functional alpha-bungarotoxin receptors are expressed if the membrane-spanning and cytoplasmic domains of the alpha7 subunit are replaced by the homologous regions of the serotonin-3 receptor subunit. Bgt-binding surface receptors assembled from chimeric alpha7/serotonin-3 subunits contain subunits in two different conformations as shown by differences in redox state and other features of the subunits. In contrast, alpha7 subunit complexes in the same cell line contain subunits in a single conformation. The appearance of a second alpha7/serotonin-3 subunit conformation coincides with the formation of alpha-bungarotoxin-binding sites and intrasubunit disulfide bonding, apparently within the alpha7 domain of the alpha7/serotonin-3 chimera. In cell lines of neuronal origin that produce functional alpha7 receptors, alpha7 subunits undergo a conformational change similar to alpha7/serotonin-3 subunits. alpha7 subunits, thus, can fold and assemble by two different pathways. Subunits in a single conformation assemble into nonfunctional receptors, or subunits expressed in specialized cells undergo additional processing to produce functional, alpha-bungarotoxin-binding receptors with two alpha7 conformations. Our results suggest that alpha7 subunit diversity can be achieved postranslationally and is required for functional homomeric receptors.  相似文献   

5.
There is evidence for a functionally important extracellular calcium-sensing receptor in osteoblasts, but there is disagreement regarding its identity. Candidates are CASR and a putative novel calcium-sensing receptor, called Ob.CASR. To further characterize Ob.CASR and to distinguish it from CASR, we examined the extracellular cation-sensing response in MC3T3-E1 osteoblasts and in osteoblasts derived from CASR null mice. We found that extracellular cations activate ERK and serum response element (SRE)-luciferase reporter activity in osteoblasts lacking CASR. Amino acids, but not the calcimimetic NPS-R568, an allosteric modulator of CASR, also stimulate Ob.CASR-dependent SRE-luciferase activation in MC3T3-E1 osteoblasts. In addition, we found that the dominant negative Galphaq(305-359) construct inhibited cation-stimulated ERK activation, consistent with Ob.CASR coupling to Galphaq-dependent pathways. Ob.CASR is also a target for classical GPCR desensitization mechanisms, since beta-arrestins, which bind to and uncouple GRK phosphorylated GPCRs, attenuated cation-stimulated SRE-luciferase activity in CASR deficient osteoblasts. Finally, we found that Ob.CASR and CASR couple to SRE through distinct signaling pathways. Ob.CASR does not activate RhoA and C3 toxin fails to block Ob.CASR-induced SRE-luciferase activity. Mutational analysis of the serum response factor (SRF) and ternary complex factor (TCF) elements in SRE demonstrates that Ob.CASR predominantly activates TCF-dependent mechanisms, whereas CASR activates SRE-luciferase mainly through a RhoA and SRF-dependent mechanism. The ability of Ob.CASR to sense cations and amino acids and function like a G-protein coupled receptor suggests that it may belong to the family of receptors characterized by an evolutionarily conserved amino acid sensing motif (ANF) linked to an intramembranous 7 transmembrane loop region (7TM).  相似文献   

6.
Muscarinic acetylcholine receptors (mAChRs) have five subtypes and play crucial roles in various physiological functions and pathophysiological processes. Poor subtype specificity of mAChR modulators has been an obstacle to discover new therapeutic agents. Muscarinic toxin 7 (MT7) is a natural peptide toxin with high selectivity for the M1 receptor. With three to five residues substituted, M3, M4, and M5 receptor mutants could bind to MT7 at nanomolar concentration as the M1 receptor. However, the structural mechanisms explaining MT7–mAChRs binding are still largely unknown. In this study, we constructed 10 complex models of MT7 and each mAChR subtype or its mutant, performed molecular dynamics simulations, and calculated the binding energies to investigate the mechanisms. Our results suggested that the structural determinants for the interactions on mAChRs were composed of some critical residues located separately in the extracellular loops of mAChRs, such as Glu4.56, Leu4.60, Glu/Gln4.63, Tyr4.65, Glu/Asp6.67, and Trp7.35. The subtype specificity of MT7 was attributed to the non‐conserved residues at positions 4.56 and 6.67. These structural mechanisms could facilitate the discovery of novel mAChR modulators with high subtype specificity and enhance the understanding of the interactions between ligands and G‐protein‐coupled receptors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting.  相似文献   

10.
Chen XQ  Wang B  Wu C  Pan J  Yuan B  Su YY  Jiang XY  Zhang X  Bao L 《Cell research》2012,22(4):677-696
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.  相似文献   

11.
The vacuole of plant cells is no longer considered to be a single compartment with multifunctional properties. A lot of evidence now points to the presence of multiple functionally distinct vacuolar compartments, some existing side by side in the same cell. As a consequence, the plant Golgi apparatus is faced with the problem of recognizing proteins destined for lytic and storage vacuoles and segregating them individually from the flow of secretory proteins to the cell surface. In contrast to acid hydrolases, which are sorted by BP-80-like receptors at the trans-Golgi of plant cells, the identification of receptors for storage proteins has in many ways resembled 'the search for the Holy Grail'. There are several candidates for storage protein receptors, but in no single case is the evidence entirely convincing. Much of the problem lies in the lack of consensus, sorting sequences in the proteins investigated. Other difficulties stem from 'out-of-context' heterologous expression studies. Evidence is now accumulating for the participation of hydrophobic sequences in inducing the formation of protein aggregates in the early Golgi apparatus, for which classical sorting receptors do not appear to be necessary. This review critically examines the current situation and contrasts the differences between data obtained in situ and data obtained transgenically. It highlights the so-called 'dense-vesicle' pathway and culminates with a discussion on the hitherto neglected problem of the intracellular transport of storage protein processing enzymes.  相似文献   

12.
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7‐nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca2+ signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca2+ signaling and cell viability. We used human SH‐SY5Y neuroblastoma cells overexpressing α7‐nAChRs (α7‐SH) and their control (C‐SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca2+ with Fura‐2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch‐clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7‐SH but not of C‐SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca2+ concentration; (iii) released Ca2+ from the ER by a Ca2+‐induced Ca2+ release mechanism only in α7‐SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7‐nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7‐nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca2+, overloading of intracellular Ca2+, and neuronal cell death.

  相似文献   


13.
Oligomerization of glycosyl-phosphatidylinositol-anchored proteins (GPI-APs) into high molecular weight complexes is an essential step for their apical sorting in polarized epithelial cells. However, the mechanism by which apical GPI-APs oligomerize is still unclear. To investigate the possible role of N- and O-glycosylation, we have analysed the behaviour of two glycosylated GPI-anchored apical proteins, p75GPI and placental alkaline phosphatase (PLAP), and their glycosylation mutants. We found that both the N- and O-glycosylation mutants are apically sorted, associate to detergent-resistant microdomains and are able to oligomerize, like the wild-type proteins, suggesting that glycosylation does not have a direct role in GPI-AP oligomerization and apical sorting. Interestingly, when cells are depleted of cholesterol and treated with tunicamycin, treatments that by themselves do not affect PLAP sorting, PLAP is not able to oligomerize and is missorted to the basolateral surface, thus supporting an indirect role of N-glycosylation, possibly mediated by a raft-associated glycosylated interactor.  相似文献   

14.
Four missense mutations, that target highly conserved amino acid residues in the small GTPase Rab7, have been associated with the Charcot-Marie-Tooth (CMT) type 2B phenotype. CMT2B peripheral axonal neuropathies are characterized by severe sensory loss, often complicated by infections, arthropathy, and amputations. Here, we have investigated the biochemical and functional properties of the Rab7 K157N mutated protein. Interestingly, Rab7 K157N showed altered nucleotide exchange rate and GTP hydrolysis compared to the wild type protein. Consistently, the majority of the expressed protein in HeLa cells was bound to GTP. In addition, Rab7 K157N was able to restore EGF degradation, previously inhibited by Rab7 silencing. Altogether these data indicate that Rab7 K157N, similarly to the other three mutated proteins causative of CMT2B, is predominantly in the GTP-bound form and behaves as an active mutant. Therefore, activated forms of Rab7 protein cause the CMT2B disease.  相似文献   

15.
7TM receptors are easily fused to proteins such as G proteins and arrestin but because of the fact that their terminals are found on each side of the membrane they cannot be joined directly in covalent dimers. Here, we use an artificial connector comprising a transmembrane helix composed of Leu-Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the β2-adrenergic and the NK1 receptors, which normally do not dimerize with each other, were expressed surprisingly well at the cell surface, where they bound ligands and activated signal transduction in a manner rather similar to the corresponding wild-type receptors. The concatameric heterodimers internalized upon stimulation with agonists for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse other membrane proteins.  相似文献   

16.
Phosphatidylinositol 3-kinase inhibitors have been shown to affect endocytosis or subsequent intracellular sorting in various receptor systems. Agonist-activated beta(2)-adrenergic receptors undergo desensitization by mechanisms that include the phosphorylation, endocytosis and degradation of receptors. Following endocytosis, most internalized receptors are sorted to the cell surface, but some proportion is sorted to lysosomes for degradation. It is not known what governs the ratio of receptors that recycle versus receptors that undergo degradation. To determine if phosphatidylinositol 3-kinases regulate beta(2)-adrenergic receptor trafficking, HEK293 cells stably expressing these receptors were treated with the phosphatidylinositol 3-kinase inhibitors LY294002 or wortmannin. We then studied agonist-induced receptor endocytosis and postendocytic sorting, including recycling and degradation of the internalized receptors. Both inhibitors amplified the internalization of receptors after exposure to the beta-agonist isoproterenol, which was attributable to the sorting of a significant fraction of receptors to an intracellular compartment from which receptor recycling did not occur. The initial rate of beta(2)-adrenergic receptor endocytosis and the default rate of receptor recycling were not significantly altered. During prolonged exposure to agonist, LY294002 slowed the degradation rate of beta(2)-adrenergic receptors and caused the accumulation of receptors within rab7-positive vesicles. These results suggest that phosphatidylinositol 3-kinase inhibitors (1) cause a misrouting of beta(2)-adrenergic receptors into vesicles that are neither able to efficiently recycle to the surface nor sort to lysosomes, and (2) delays the movement of receptors from late endosomes to lysosomes.  相似文献   

17.
The thermoacidophilic archaeonSulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S.shibatae. These two genes, designatedssh7a andssh7b, have been cloned, sequenced and expressed inEscherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, thecis-regulatory sequences of thessh7a andssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein inSulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation ofSulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments with a binding size of ∼ 6.6 base pairs and an apparent dissociation constant of (0.7–1.0) × 10-7 mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled DNA than to linear or relaxed DNA.  相似文献   

18.
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DMA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both n  相似文献   

19.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) mediate transport of lysosomal enzymes to lysosomes. Recent studies established that the receptors are conserved throughout vertebrates. Although we purified the mollusc receptors and identified only a lysosomal enzyme receptor protein (LERP) in the Drosophila melanogaster, little is known about their structure and functional roles in the invertebrates. In the present study, we purified the putative receptors from the highly evolved invertebrate, starfish, cloned the cDNA for the MPR 46, and expressed it in mpr(−/−) mouse embryonic fibroblast cells. Structural comparison of starfish receptor sequences with other vertebrate receptors gave valuable information on its extensive structural homology with the vertebrate MPR 46 proteins. The expressed protein efficiently sorts lysosomal enzymes within the cells establishing a functional role for this protein. This first report on the invertebrate MPR 46 further confirms the structural and functional conservation of the receptor not only in the vertebrates but also in the invertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号