首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An IL-2-expressing, attenuated strain of Salmonella typhimurium (strain GIDIL2) was previously shown to survive poorly and to have lower immunogenicity in susceptible mice than its parental, non-cytokine-expressing strain (designated BRD509). In the present study, we compared the immune responses induced by both bacterial strains in inherently Salmonella-resistant C3H/HeN mice. Analysis of the bacterial loads in the peritoneum and spleen revealed that colony-forming units (CFUs) of GIDIL2 were consistently lower than the corresponding BRD509 CFUs. As early as 48 h after inoculation, there were 60-fold lower CFUs of GIDIL2 than BRD509 organisms in the peritoneal cavity. Similarly, the differences in splenic CFUs of GIDIL2 were 20- to 50-fold lower than those of BRD509 over a period of 3-21 days post-injection. This rapid rate of clearance of the GIDIL2 organisms correlated with significantly decreased infection-induced splenomegaly and nitric oxide production by spleen cells. However, despite the poor survival of GIDIL2 organisms in vivo, they could activate peritoneal NK cells efficiently. As early as 48 h after immunization, equivalent levels of NK-mediated cellular cytotoxicity were induced by BRD509 and GIDIL2 strains. Direct evidence for priming of the immune response was shown by demonstrating increased production of IFN-gamma in a recall response by spleen memory T cells obtained 3 weeks after immunization. Finally, mice inoculated with a single dose of either BRD509 or GIDIL2 organisms were fully protected against a challenge of >100-fold the LD50 dose of virulent Salmonella. Taken together, our data demonstrate that despite their rapid clearance from the reticuloendothelial system, IL-2-expressing Salmonella are immunogenic and fully capable of affording excellent protection against virulent challenge in Salmonella-resistant C3H/HeN mice.  相似文献   

2.
STM1 is an aro A(-) attenuated mutant of Salmonella enterica serovar Typhimurium, and is a well-characterised vaccine strain available to the livestock industry for the prevention of salmonellosis in chickens. This strain has potential for heterologous antigen delivery, and here we show that the strain can be used to deliver a model antigen, ovalbumin, to immune cells in vitro and in vivo. Two plasmid constructs expressing the ovalbumin gene were utilised, one of which uses a prokaryotic promoter and the other the CMV promoter (DNA vaccine). In vitro, STM1 carrying ovalbumin-encoding plasmids was able to invade dendritic cells and stimulate a CD8(+) cell line specific for the dominant ovalbumin epitope, SIINFEKL. In vivo, spleen cells were responsive to SIINFEKL after vaccination of mice with ovalbumin-encoding plasmids in STM1, and finally, humoral responses, including IgA, were induced after vaccination.  相似文献   

3.
4.
In the present study we investigated the flagellin-specific serum (IgG) and fecal (IgA) antibody responses elicited in BALB/c mice immunized with isogenic mutant derivatives of the attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) SL3261 strain expressing phase 1 (FliCi), phase 2 (FljB), or no endogenous flagellin. The data reported here indicate that mice orally immunized with recombinant S. Typhimurium strains do not mount significant systemic or secreted antibody responses to FliCi, FljB or heterologous B-cell epitopes genetically fused to FliCi. These findings are particularly relevant for those interested in the use of flagellins as molecular carriers of heterologous antigens vectored by attenuated S. Typhimurium strains.  相似文献   

5.
Zhang Y  Yang J  Bao R  Chen Y  Zhou D  He B  Zhong M  Li Y  Liu F  Li Q  Yang Y  Han C  Sun Y  Cao Y  Yan H 《PloS one》2011,6(9):e24296
The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol) in mucosal epithelial cells (specifically Caco-2 cell layers) and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.  相似文献   

6.
The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.  相似文献   

7.
To determine if the food-grade bacterium Lactococcus lactis holds promise as a vaccine antigen delivery vector we have investigated whether this bacterium can be made to produce high levels of a heterologous protein antigen. A regulated expression system has been developed which may be generally suitable for the expression of foreign antigens (and other proteins) In L. lactis. The system utilizes the fast-acting T7 RNA polymerase to transcribe target genes, and provides the first example of the successful use of this polymerase in a Gram-positive bacterium. When the performance of the expression system was characterized using tetanus toxin fragment C (TTFC) up to 22% of soluble cell protein was routinely obtained as TTFC. Mice immunized subcutaneously with L. lactis expressing TTFC were protected from lethal challenge with tetanus toxin. These results show for the first time that L. lactis is able to express substantial quantities of a heterologous protein antigen and that this organism can present this antigen to the Immune system in an immunogenic form.  相似文献   

8.
An investigation into the effects of Salmonella plasmid virulence genes (spv) on autophagy, apoptosis, and inflammation was carried out in mice, using a strain of Salmonella enterica serovar Typhimurium (S. typhimurium) SR-11 carrying spv. Strain BRD509 without spv was used as a control. Results showed that the expression of autophagy protein Beclin-1 in the livers and spleens in the SR-11 group was lower than that in the BRD509 group, while the apoptosis protein, Caspase-3, was higher in the SR-11 group. Inflammatory cytokine levels [interleukin 12 (IL-12) and interferon γ (IFN-γ)] were higher in the SR-11 group compared with those in the BRD509 group since 4 d post-infection. In addition, we found an increase in severe pathological changes and larger viable bacterial amounts in livers and spleens in the SR-11 group. After intervention with autophagy agonist rapamycin (RAPA), Beclin-1 expression increased in both groups, while Caspase-3 expression was different between the two groups: Caspase-3 decreased in the SR-11 group but increased in the BRD509 group. Moreover, RAPA decreased cytokine levels, bacterial quantity and organ-related injury in the SR-11 group whereas RAPA increased cytokine levels and aggravated organ injury in the BRD509 group. Results from these studies suggest that S. typhimurium with spv genes may exacerbate infection by inhibiting autophagy and affecting the production of inflammatory cytokines. RAPA-enhanced autophagy may improve the secretion of cytokines in order to protect the host from damaging by Salmonella infection. Our study suggests that the regulation of cellular autophagy may play a role in the prevention and control of certain infectious diseases.  相似文献   

9.
Bacille Calmette-Guèrin (BCG), a live attenuated tubercle bacillus, is currently the most widely used vaccine in the world. Because of its unique characteristics, including low toxicity, adjuvant potential, and long-lasting immunity, BCG represents a novel vaccine vehicle with which to deliver protective antigens of multiple pathogens. We have developed episomal and integrative expression vectors employing regulatory sequences of major BCG heat shock proteins for stable maintenance and expression of foreign antigens in BCG vaccine strains (22). Shuttle plasmids capable of autonomous replication in Escherichia coli and BCG were constructed with a DNA cassette containing a minimal replicon derived from the Mycobacterium fortuitum plasmid pAL5000. Efficient and stable chromosomal integration of recombinant plasmids into BCG was achieved using a DNA segment containing the mycobacteriophage L5 attachment site and integrase coding sequence. Using the BCG hsp60 and hsp70 stress gene promoters, we were able to express Escherchia coli beta-galactosidase to levels in excess of 10% of total cell protein. The major antigens of HIV-1 gag, pol, and env were also stably expressed using our vector systems. The recombinant BCG elicited long-lasting humoral and cellular immune responses to these antigens in mice. Antibody responses to beta-galactosidase using as few as 200 colony-forming units were detected 6 weeks after immunization, and titers (1:30,000) were sustained for more than 10 weeks. Cellular immune responses, of both cytotoxic T cell (CTL) and helper T lymphocytes, were detected to beta-galactosidase. CTL responses were also induced to the HIV-1 envelope protein. Thus, we have demonstrated stable recombinant antigen expression, processing, and presentation using our recombinant BCG vector system. This live recombinant vector system shows promise as a universally applicable and safe vaccine vehicle for protection against various infectious diseases.  相似文献   

10.
Live, attenuated strains of many bacteria that synthesize and secrete foreign antigens are being developed as vaccines for a number of infectious diseases and cancer. Bacterial-based vaccines provide a number of advantages over other antigen delivery strategies including low cost of production, the absence of animal products, genetic stability and safety. In addition, bacterial vaccines delivering a tumor-associated antigen (TAA) stimulate innate immunity and also activate both arms of the adaptive immune system by which they exert efficacious anti-tumor effects. Listeria monocytogenes and several strains of Salmonella have been most extensively studied for this purpose. A number of attenuated strains have been generated and used to deliver antigens associated with infectious diseases and cancer. Although both bacteria are intracellular, the immune responses invoked by Listeria and Salmonella are different due to their sub-cellular locations. Upon entering antigen-presenting cells by phagocytosis, Listeria is capable of escaping from the phagosomal compartment and thus has direct access to the cell cytosol. Proteins delivered by this vector behave as endogenous antigens, are presented on the cell surface in the context of MHC class I molecules, and generate strong cell-mediated immune responses. In contrast, proteins delivered by Salmonella, which lacks a phagosomal escape mechanism, are treated as exogenous antigens and presented by MHC class II molecules resulting predominantly in Th2 type immune responses. This fundamental disparity between the life cycles of the two vectors accounts for their differential application as antigen delivery vehicles. The present paper includes a review of the most recent advances in the development of these two bacterial vectors for treatment of cancer. Similarities and differences between the two vectors are discussed.  相似文献   

11.
Older humans and experimental animals have been repeatedly found to have higher titers of autoantibodies than do younger individuals despite the impaired responses of older individuals to foreign antigens. The studies reported here were designed to examine the relationship between these two age-related changes in antibody responses. Antibody response to foreign antigen was measured concurrently with autoantibody response in the same mice. Old mice (18-24 months old) had decreased responses to foreign antigens and increased responses to bromelain-treated syngeneic erythrocytes, compared to young mice (2 months old). In vitro mixing experiments were consistent with the possibility that suppressor cell activity in spleen cells from old mice reduce the antibody response to foreign antigen but not to autologous antigen. The results support an emerging view that age-associated changes in immune responses are the result of dysregulation rather than exhaustion of the immune system.  相似文献   

12.
A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection.Due to its ubiquitous ability to invade host cells,Salmonella typhimurium might be a good candidate for displaying viral antigens.We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S.typhimurium BRD509 using the ice nucleation protein.The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated.The results showed that display motifs in the protein can target integral foreign protein on the surface of S.typhimurium BRD509.Moreover,recombinant strains with surface displayed viral proteins retained their invasiveness,suggesting that the recombinant S.typhimurium can be used as live vaccine vector for eliciting complete immunogenicity.The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.  相似文献   

13.
The antigen-2 or proline rich antigen (Ag2/PRA) from Coccidioides immitis, known to protect mice against experimental Coccidioidomycosis, was expressed in the genetically attenuated cholera vaccine candidate Vibrio cholerae 638 and its thymine auxotrophic derivative 638T. Intranasal immunization of mice with strains producing Ag2/PRA induced serum vibriocidal antibody and Ag2/PRA-specific total IgG responses in outbred Swiss Webster and inbred BALB/c mice. Analysis of IgG subclasses showed a predominance of IgG2a subclass antibodies. Lymphocytes from immunized mice stimulated with pure Ag2/PRA showed a significant proliferative response with production of interferon-gamma. Positive selection for plasmid maintenance in vivo did not enhance immune response to Ag2/PRA. These results demonstrate that genetically attenuated strains of the non-invasive pathogen V. cholerae can be used to express and deliver foreign antigens to stimulate a Th1 type of immune response.  相似文献   

14.
A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection. Due to its ubiquitous ability to invade host cells, Salmonella typhimurium might be a good candidate for displaying viral antigens. We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S. typhimurium BRD509 using the ice nucleation protein. The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated. The results showed that display motifs in the protein can target integral foreign protein on the surface of S. typhimurium BRD509. Moreover, recombinant strains with surface displayed viral proteins retained their invasiveness, suggesting that the recombinant S. typhimurium can be used as live vaccine vector for eliciting complete immunogenicity. The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.  相似文献   

15.
Yin Y  Wu C  Song J  Wang J  Zhang E  Liu H  Yang D  Chen X  Lu M  Xu Y 《PloS one》2011,6(7):e22524

Background

Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance.

Principal Findings

Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance.

Conclusion

Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.  相似文献   

16.
An early event in Salmonella infection is the invasion of non-phagocytic intestinal epithelial cells. The pathogen is taken up by macropinocytosis, induced by contact-dependent delivery of bacterial proteins that subvert signalling pathways and promote cytoskeletal rearrangement. SipB, a Salmonella protein required for delivery and invasion, was shown to localize to the cell surface of bacteria invading mammalian target cells and to fractionate with outer membrane proteins. To investigate the properties of SipB, we purified the native full-length protein following expression in recombinant Escherichia coli. Purified SipB assembled into hexamers via an N-terminal protease-resistant domain predicted to form a trimeric coiled coil, reminiscent of viral envelope proteins that direct homotypic membrane fusion. The SipB protein integrated into both mammalian cell membranes and phospholipid vesicles without disturbing bilayer integrity, and it induced liposomal fusion that was optimal at neutral pH and influenced by membrane lipid composition. SipB directed heterotypic fusion, allowing delivery of contents from E. coli-derived liposomes into the cytosol of living mammalian cells.  相似文献   

17.
It has been frequently reported that gp96 acts as a strong biologic adjuvant. Some studies have even investigated adjuvant activity of the gp96 C- or N-terminal domain. The controversy surrounding adjuvant activity of gp96 terminal domains prompted us to compare adjuvant activity of gp96 C- or N-terminal domain toward Her2/neu, as DNA vaccine in a Her2/neu-positive breast cancer model. To do so, mice were immunized with DNA vaccine consisting of transmembrane and extracellular domain (TM + ECD) of rat Her2/neu alone or fused to N- or C-terminal domain of gp96. Treatment with Her2/neu fused to N-terminal domain of gp96 resulted in tumor progression, compared to the groups vaccinated with pCT/Her2 or pHer2. Immunological examination revealed that treatment with Her2/neu fused to N-terminal domain of gp96 led to significantly lower survival rates, higher interferon-γ secretion, and induced infiltration of CD4+/CD8+ cells to the tumor site. However, it could not induce cytotoxic T lymphocyte activity, did not decrease regulatory T cell percentage at the tumor site, and eventually led to tumor progression. Our results reveal that gp96 N-terminal domain does not have adjuvant activity toward Her2/neu. It is also proposed that adjuvant activity and the resultant immune response of gp96 terminal domains may be directed by the antigen applied.  相似文献   

18.
We show that the subcellular location of foreign antigens expressed in recombinant vaccinia viruses influences their effectiveness as immunogens. Live recombinant viruses induced very poor antibody responses to a secreted repetitive plasmodial antigen (the S-antigen) in rabbits and mice. The poor response accords with epidemiological data suggesting that S-antigens are poorly immunogenic. Appending the transmembrane domain of a membrane immunoglobulin (immunoglobulin G1) to its carboxy terminus produced a hybrid S-antigen that was no longer secreted but was located on the surface of virus-infected cells. This recombinant virus elicited high antibody titers to the S-antigen. This approach will facilitate the use of live virus delivery systems to immunize against a wide range of foreign nonsurface antigens.  相似文献   

19.
The probiotic lactic acid bacterium Lactobacillus plantarum is a potential delivery vehicle for mucosal vaccines because of its generally regarded as safe (GRAS) status and ability to persist at the mucosal surfaces of the human intestine. However, the inherent immunogenicity of vaccine antigens is in many cases insufficient to elicit an efficient immune response, implying that additional adjuvants are needed to enhance the antigen immunogenicity. The goal of the present study was to increase the proinflammatory properties of L. plantarum by expressing a long (D1 to D5 [D1-D5]) and a short (D4-D5) version of the extracellular domain of invasin from the human pathogen Yersinia pseudotuberculosis. To display these proteins on the bacterial surface, four different N-terminal anchoring motifs from L. plantarum were used, comprising two different lipoprotein anchors, a transmembrane signal peptide anchor, and a LysM-type anchor. All these anchors mediated surface display of invasin, and several of the engineered strains were potent activators of NF-κB when interacting with monocytes in cell culture. The most distinct NF-κB responses were obtained with constructs in which the complete invasin extracellular domain was fused to a lipoanchor. The proinflammatory L. plantarum strains constructed here represent promising mucosal delivery vehicles for vaccine antigens.  相似文献   

20.
Lactobacilli as live vaccine delivery vectors: progress and prospects   总被引:19,自引:0,他引:19  
Evidence is accumulating that lactobacilli influence the immune response in a strain-dependent manner. This immunomodulatory capacity is important for the development of the immune response, and also identifies Lactobacillus as a potent oral vaccine carrier. Most of our current knowledge of the use of lactobacilli for vaccination purposes has been obtained with tetanus toxin fragment C (TTFC) as the model antigen. This knowledge, together with our ever-increasing understanding of the immune system and recent developments in cloning and expression techniques, should enable the utilisation of antigens other than TTFC and has made the development of lactobacilli as live vaccines a realistic prospect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号