首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Low expression of the oxidative stress sensor Keap1 is thought to be involved in carcinogenesis. However, the mechanisms responsible for inactivation of the Keap1 gene remain unknown. We investigated Keap1 expression using RT-PCR and found that it was downregulated in lung cancer cell lines and tissues when compared with a normal bronchial epithelial cell line. Treatment with 5-Aza-2′-deoxycytidine restored Keap1 expression in lung cancer cell lines, indicating the silencing mechanism to be promoter methylation. Moreover, we evaluated cytosine methylation in the Keap1 promoter and demonstrated that the P1 region, including 12 CpG sites, was highly methylated in lung cancer cells and tissues, but not in normal cells. Importantly, we found evidence that three specific CpG sites (the 3rd, 6th, and 10th CpGs of P1) might be binding sites for proteins that regulate Keap1 expression. Thus, our results suggest for the first time that Keap1 expression is regulated by an epigenetic mechanism in lung cancer.  相似文献   

3.
The novel cancer/testis antigen gene, NY-SAR-35, is expressed exclusively in normal testis and in various histological types of tumor. However, the NY-SAR-35 gene expression is observed to be aberrant in several cancer cell lines and tissues. The analysis of methylation status of the NY-SAR-35 gene promoter in various cancer cell lines showed that its expression was related to methylation of the promoter region. Treatment of human cancer cell lines with the demethylating agent 5-aza-2′-deoxycytidine activated the expression of the NY-SAR-35 gene. In addition, transfection experiments on various fragments of the CpG-rich gene promoter indicate that in vitro methylation of the NY-SAR-35 gene promoter results in the loss of promoter activity. The expression of NY-SAR-35 is therefore activated by hypomethylation of the CpG island in the gene promoter.  相似文献   

4.
研究溶酶体相关4次跨膜蛋白B(lysosome associated protein transmembrane 4 beta,LAPTM4B)基因在食管癌中的表达,及其启动子区甲基化状态,为进一步揭示LAPTM4B在不同肿瘤中表达高低机理提供参考.采用半定量RT-PCR法,确定42对食管癌中LAPTM4B mRNA表达.采用5对肝癌中LAPTM4B mRNA表达做内对照(利用灰度值比较),分析该基因在食管癌中的表达强度.选取其中3对食管癌组织样品(癌组织和癌旁正常组织),提取基因组DNA,采用亚硫酸氢钠修饰法,联合基因测序法分析LAPTM4B启动子区是否有甲基化修饰位点存在.结果发现,在42对食管癌组织中,癌组织和癌旁正常组织LAPTM4B mRNA表达存在差异:癌组织中LAPTM4B mRNA表达阳性为37/42(88.1%),癌旁正常组织中LAPTM4B mRNA表达阳性为26/42(61.9%).经基因测序法分析3对食管癌组织经通用引物PCR扩增的片段,发现1例癌旁正常组织样品中有3个CpG位点.以上结果表明,LAPTM4B基因与肝癌比较在食管癌中低表达,其启动子区1例癌旁正常组织在靠近转录起始点上游-418、-416和-398位置,存在3个CpG位点,而其他2例癌旁正常组织和3例癌组织中,没有发现CpG位点.这提示,LAPTM4B基因启动子区甲基化是其表达调节的重要方式.  相似文献   

5.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

6.
7.
Thyroid-stimulating-hormone-alpha (TSH-α) is the common subunit of the heterodimeric hormone TSH and also of other glycoprotein hormones. Although both expression and promoter-methylation profiles of the gene have been observed in the pituitary gland and placenta, no observation has been reported in the thyroid gland. We examined TSH-α expression in normal and cancer thyroid tissues. Real-time RT-PCR and immunohistochemistry indicated that TSH-a was repressed in normal tissues while activated in cancer tissues. To identify the epigenetic mechanism of upregulation of TSH-α, the methylation status of the seven CpG sites in the TSH-a promoter was examined in sixty thyroid cancer tissues. Two CpG sites showed remarkably higher levels of methylation in cancer (46 and 45%) than in normal tissues (24 and 23%) (p=0.010 and 0.003). These findings indicate that TSH-α is expressed in the thyroid cancer tissue per se and that its expression can be affected by promoter methylation.  相似文献   

8.
Ectopic secretion of ACTH, from sites such as small cell lung cancer (SCLC), results in severe Cushing's syndrome. ACTH is cleaved from POMC. The syndrome may occur when the highly tissue-specific promoter of the human POMC gene (POMC) is activated. The mechanism of activation is not fully understood. This promoter is embedded within a defined CpG island, and CpG islands are usually considered to be unmethylated in all tissues. We demonstrate that much of this CpG island is methylated in normal nonexpressing tissues, in contrast to somatically expressed CpG island promoters reported to date, and is specifically unmethylated in expressing tissues, tumors, and the POMC-expressing DMS-79 SCLC cell line. A narrow 100-bp region is free of methylation in all tissues. E2F factors binding to the upstream domain IV region of the promoter have been shown to be involved in the expression of POMC in SCLC. We show that these sites are methylated in normal nonexpressing tissues, which will prevent binding of E2F, but are unmethylated in expressing tissue. Methylation in vitro is sufficient for silencing of expression, which is not reversed by treatment with Trichostatin A, suggesting that inhibition of expression may be mediated by means other than recruitment of histone deacetylase activity. The DMS-79 cells lack POMC demethylating activity, implying that the methylation and expression patterns are likely to be set early or before neoplastic transformation, and that targeted de novo methylation might be a potential therapeutic strategy.  相似文献   

9.
Abnormal hypermethylation of CpG islands not only associated with tumor suppressor genes can lead to repression of gene expression, but also contribute to escape of the tumor from immune surveillance and contribute significantly to tumorigenesis. In the present study, we studied the hypermethylation of low molecular-weight protein (LMP) gene and its regulation on protein expression in biopsies from resected tissues from Kazak’s esophageal squamous cell carcinoma (ESCC) patients and their neighboring normal tissues. LMP2 and LMP7 genes promoter region methylation sequences were maped in esophageal cancer cell line Eca109 by bisulfite-sequencing PCR and quantitative detection of methylated DNA from 30 pairs of Kazak’s ESCC and adjacent normal tissues by MassARRAY (Sequenom, San Diego, CA, USA) and LMP2 and LMP7 protein expression were analyzed with immunohistochemistry. In Eca109, we identified 6 CG sites methylated from all of 22 CpG sites of LMP7 gene. However, no methylation was found for LMP2. The analysis of the data resulted from the quantitative analysis of single CpG site methylation by Sequenom MassARRAY platform, has shown that the methylation level between two groups CpG sites (CpG_5, CpG_9, CpG_20, CpG_21 and CpG_20) from CpG_1, CpG_2, CpG_3, CpG_4, CpG_5, CpG_6, CpG_7, CpG_8, CpG_9, CpG_10.11, CpG_12.13.14, CpG_15.16.17.18, CpG_19, CpG_20, CpG_21 and CpG_22 significant differences between ESCC and neighboring normal tissues. The analysis of methylation level of whole target CpG fragment indicated that the methylation level of LMP7 was significant higher in ESCC (0.0517 ± 0.0357) than in neighboring normal tissues (0.0380 ± 0.0214, P < 0.05). there was a tendency of decreasing the LMP7 proteins expression as the increasing the methylation level of LMP7 gene promoter regions (F = 7.69, P = 0.041). The LMP7 gene promoter methylation and protein downregulation were correlated at high extent in Kazakh’s ESCC patients, and may explain the epigenetic regulation on gene expression.  相似文献   

10.
11.
12.
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancer in Jammu and Kashmir region of India and has multi-factorial etiology involving dietary habits, genetic factors, and gene environmental interactions. Inactivation of the p16 gene expression by aberrant promoter methylation plays an important role in the progression of esophageal carcinoma. In the present investigation, we have studied the role of p16 promoter methylation in 69 histopathologically confirmed ESCC tissues and compared it with corresponding normal adjacent tissues for DNA methylation in the CpG island in the p16 promoter region by methylation-specific polymerase chain reaction (MSP) and p16 protein expression by immunoblotting. The results showed loss of p16 expression in 67% (46/69) of tumor tissues compared to only 3% in control tissues (2/69). Promoter methylation was observed in 52% (36/69) of tumor tissues and it gradually increased with the increasing severity of histological grades of the cancer (P = 0.0001). Loss of p16 expression with promoter methylation was observed in 26 of 36 cases (72%). Analysis of patients dietary habits revealed a strong association between promoter methylation and high consumption of hot salted tea (P < 0.05) which is a most favourite drink commonly consumed by Kashmiri people.  相似文献   

13.
14.
15.
Wang X  Fan J  Liu D  Fu S  Ingvarsson S  Chen H 《PloS one》2011,6(10):e25913
The highly repetitive Alu retroelements are regarded as methylation centres in the genome. Methylation in the gene promoters could be spreading from them. Promoter methylation of MLH1 is frequently detected in cancers, but the underlying mechanism is unclear. The aim of this study is to understand whether the methylation in the Alu elements is associated with promoter methylation in the MLH1 gene. Bisulfite genomic sequencing was used to analyse the CpG sites of the 5' end (promoter, exon 1 and Alu-containing intron 1) of the MLH1 gene in colorectal cancer cells and tissues, and gastric cancer tissues. Hypomethylation in the Alu elements and hypermethylation in the promoters and the regions between the promoters and the Alu elements were detected in two cancer cell lines and seven cancer tissues. However, demethylation or hypomethylation of the MLH1 promoter and regions between promoter and the Alu elements, and hypermethylation in the Alu elements, were identified in the normal tissues. MLH1 promoter methylation may spread from Alu elements that are located in intron 1 of the MLH1 gene. The trans-acting elements binding to the mutation sites could play a role in the methylation spreading.  相似文献   

16.
17.
侯道荣  马骏  夏龙  徐旭广  张小平  戴有金  温泽锌  郑媛 《生物磁学》2009,(20):3890-3893,3889
目的:研究脑胶质瘤中p16基因启动子区甲基化情况及其临床意义。方法:用甲基化特异性PCR技术检测42例脑胶质瘤组织和癌旁正常脑组织中p16基因启动子甲基化,并分析该基因启动子甲基化与临床病理特征之间的关系。结果:脑胶质瘤组织中p16基因异常甲基化率(38.27%)显著高于癌旁正常脑组织中p16基因的异常甲基化率(8.8%,P=0.000)。发生甲基化的肿瘤组织或者正常脑组织中p16基因mRNA和蛋白表达显著降低。此外,p16基因异常甲基化和肿瘤病理分级有相关性(P=0.007),而与患者性别、年龄及肿瘤类型等临床特征无关(P=0.669,0.869和0.944)。结论:p16基因启动子区CpG岛高甲基化与p16表达下调相关,推测p16启动子区CpG岛高甲基化是导致p16基因在脑胶质瘤中表达下调的重要因素,有望成为脑胶质瘤早期辅助诊断的分子标志物之一。  相似文献   

18.
目的检测食管鳞状细胞癌(esophageal squamous cell cancer,ESCC)中Wnt通路拮抗基因DICKKOPF-3(DKK3)的甲基化状态,探讨其与ESCC发生的关系。方法应用甲基化特异性PCR(methylation specificPCR,MSP)及RT-PCR的方法检测78例ESCC及相应癌旁非肿瘤组织中DKK3基因的甲基化状态及mRNA表达情况,应用免疫组化的方法检测通路中心因子-βcatenin蛋白及下游靶基因cyclinD1的表达,并分析其与食管癌发生的关系。结果在ESCC组织中,DKK3基因的甲基化频率为37.2%(29/78),明显高于癌旁非肿瘤组织(χ2=35.622,P=0.000);癌组织中该基因的甲基化率与肿瘤患者临床分期相关(χ2=4.705,P=0.030),而与组织学分级无关;食管癌中DKK3基因mRNA的阳性表达率为65.4%(51/78),明显低于癌旁非肿瘤组织(χ2=13.298,P=0.000)。在发生甲基化的食管癌组织中该基因的mRNA表达缺失及-βcatenin蛋白的异质表达率均明显高于未发生甲基化的癌组织,且差异有统计学意义(χ2mRNA=29.141,P=0.000;χ2-βcatenin=6.245,P=0.012)。食管癌中cyclinD1的表达明显高于癌旁组织,且癌组织中该蛋白的表达与DKK3基因的甲基化状态相关(χ2=4.921,P=0.027)。结论 ESCC组织中DKK3基因高甲基化导致的转录沉默可能与食管癌的发生有关,并可能通过活化Wnt/-βcatenin信号转导通路促进下游靶基因cyclinD1的过表达发挥作用。  相似文献   

19.

Background

We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1) is down-regulated in colorectal cancers (CRC) with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.

Methodology/Principal Findings

We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963) which affects methylation of the corresponding CpG.

Conclusions/Significance

Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号