首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of some divalent cations (Ca2+, Cd2+, Cu2+, Ni2+, Pb2+ and Zn2+) in aqueous solution by saponified and cross-linked sugar-beet pulp was investigated. Saponification doubled the cation-exchange capacity, while cross-linking decreased specific surface area and hydration properties to low and stable values independent of pH and ionic strength conditions. The sorption isotherms indicated a high metal-binding capacity which increased with sorbent concentration, and followed a clear order of selectivity: Cu2+˜Pb2+ Zn2+˜Cd2+ > Ni2+ > Ca2+. The sorption data were better represented by the Langmuir isotherm than by the Freundlich one, suggesting that the monolayer sorption, mainly due to ion-exchange, would not be disturbed by lateral interactions between cations sorbed with similar sorption energies. The same order of selectivity could be drawn from the Langmuir parameters, sorption equilibrium constants (KL) and maximum binding capacities (MeAmax). Whatever the cation, KL decreased with increasing sorbent concentration, while Mebmax increased. Higher quantities of Cu2+ and Pb2+ than predicted by the one divalent cation to two carboxyl functions ratio were bound. This was attributed to the partial contribution to the sorption phenomenon of hydroxyl functions close to ionic sites, explaining the higher affinity of such cations for substrates. Cross-linked pulp exhibited higher metalbinding capacity per volume unit than the raw pulp.  相似文献   

2.
The influence of co-cations (cadmium, copper, cobalt and nickel) on lead and zinc biosorption by Streptoverticillium cinnamoneum and Penicillium chrysogenum in binary and multimetal systems was evaluated. The metal sorption capacity of S. cinnamoneum was higher than P. chrysogenum for all the metals tested. Both the biomasses exhibited preferential uptake of lead in a multimetal situation. Even though mutual inhibition was seen for all binary systems containing zinc, systems containing lead exhibited unequal inhibition. The extent of metal sorption was dependent on metal chemistry, affinity for binding sites and the type of metal binding. In multimetal systems, S. cinnamoneum and P. chrysogenum exhibited preferential sorption orders: Pb2+ > Zn2+=Cu2+ > Cd2+ > Ni2+ > Co2+ and Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+ > Co2+. The order of metal biosorption in a multimetal system could be predicted well on the basis of Langmuir parameters evaluated in binary metal systems.  相似文献   

3.
The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+ (M2+) and the simple, sterically unhindered imidazole-type ligands, imidazole, 1-methylimidazole, 5-chloro-1-methylimidazole, N-(2,3,5,6-tetrafluorophenyl)imidazole or 4′-(imidazol-1-yl)acetophenone (L), were determined by potentiometric pH titrations in aqueous solution (25°C; I = 0.5 M, NaNO3). The construction of log KMLM versus pKHLH plots results in straight lines; the equations for the least-squares lines are calculated and listed. These data allow calculation of the expected stability constant for a complex of any imidazole-type ligand, provided its pKHLH value (in the pKa range 4–8) is known. For the stabilities of Fe2+ complexes with imidazole-type ligands an estimation procedure is provided. It is shown further that the complex formation between 1-methylbenzimidazole (MBI) and Mn2+, Ni2+, Cu2+ or Zn2+ is s sterically hindered, i.e. the data points for these M(MBI)2+ complexes do not fall on the straight lines defined by the imidazole-type ligands.  相似文献   

4.
Selectivity coefficients for binding of negative and positive ions to chitosans of different chemical composition have been determined by equilibrium dialysis. Chitosans with different fraction of acetylated units (FA of 0.01 and 0.49) generally behaved similarly in their selectivity towards both negative and positive ions. No selectivity was found in the binding of chloride and nitrate ions, while chitosan showed a strong selectivity towards molybdate polyoxyanions, with selectivity coefficients around 100. Chitosan showed a strong selectivity towards copper (Cu2+) compared to the metal ions zinc (Zn2+), cadmium (Cd2+) and nickel (Ni2+), with selectivity coefficients from 10 to 1000, while little or no selectivity could be detected with the other metal ions. Ionic strength and pH did not influence the selectivity coefficients of the chitosans towards the metal ions.  相似文献   

5.
Pb2+ and Zn2+ inhibition of photosystem II (PSII) activity was reported to be mediated via displacement of native inorganic cofactors (Cl, Ca2+ and Mn2+) from the oxygen evolving complex, OEC [Rashid and Popovic (1990) FEBS Lett. 271, 181–184; Rashid et al. (1991) Photosynth. Res. 30, 123–130]. Since the binding sites of these cofactors are protected by a shield of three extrinsic polypeptides (17, 23 and 33 kDa), we investigated whether these metal ions affect the extrinsic polypeptide shield of OEC. By immunoblotting with antibodies recognizing the 23 and 33 kDa polypeptides, we showed that both the metal ions significantly dissociated the 23 kDa (+17 kDa) polypeptide, and partially dissociated the 33 kDa. Ca2+, one of the important inorganic cofactors of oxygen evolution, strongly prevented the dissociating action of Pb2+ but did not prevent the action of Zn2+. The probable molecular mechanism of action of Pb2+ and Zn2+ on PSII OEC is discussed.  相似文献   

6.
《BBA》1968,162(4):581-595
1. The possibility of the replacement of G-actin-bound calcium by various bivalent cations has been investigated. After the reaction with all cations studied, with the exception of Cu2+, action remains active, i.e., contains bound ATP and polymerizes in 0.1 M KCl.

2. The amount of G-actin-bound calcium, as well as the sum of bivalent cation after replacement, not removable by short-time Dowex-50 treatment, accounts to about 1 mole per 50000 g of G-actin.

3. The rate of exchange is of the same order for bivalent cations studied, including calcium.

4. G-actin-bound Ca2+ is fully replaced, besides free Ca2+, by free Mn2+ and Cd2+. The replacement with Mg2+, Co2+, Ni2+ and Zn2+ is not complete, and there is practically no reaction with Ba2+ and Sr2+.

5. Assuming the affinity constant of Ca2+ as 1, the following affinity constants for other bivalent cations were obtained: Mn2+, 0.90; Cd2+, 1.07; Mg2+, 0.27; Zn2+, 0.22; Co2+, 0.18; Ni2+, 0.08.

6. The results obtained show that there exists a close correlation between the ionic radius of a particular bivalent cation, and its ability to replace bound Ca2+.  相似文献   


7.
A new functional macrocyclic ligand, 2,4-dinitrophenylcyclen (= 1-(2,4-dinitrophenyl)-1,4,7,10-tetraazacyclododecane), has been synthesized and isolated as its trihydrochloric acid salt (L·3HCl). The protonation constants (log Kn) for three secondary nitrogens of L were determined by potentiometric pH titration to be 10.10, 7.33 and <2 with I = 0.10 (NaNO3) at 25°C. The 2,4-dinitrophenylaniline chromophore was proven to be a good reporter signaling proton- and metal-binding events in the macrocyclic cavity. The UV absorption band (λmax 370 nm, 8200) of the 2,4-dinitrophenylaniline moiety at pH ≥ 9 becomes quenched as pH is lowered (to pH 3.1, where the major species is L·2H+), due to the strong protonation effect extended to the aniline moiety within the macrocyclic cavity. This is in sharp contrast to the pH-independent UV absorption (λmax 390 nm, 14 000) of a reference compound, N,N-diethyl-2,4-dinitroaniline. The UV absorption band of L is shifted to lower wavelengths with Zn2+max 320 nm), Cd2+max 316 nm) and Pb2+max 317 nm), while it almost disappears with Cu2+ and Ni2+. The 1:1 Zn2+ and Cu2+ complexes with L were isolated and characterized. The Zn2+ complex recognizes 1-methylthymine anion (MT) in aqueous solution at physiological pH to yield a stable ternary complex ZnL-MT. The X-ray crystal structure of ZnL-MT showed that Zn2+ is four-coordinate with three secondary nitrogens of L and the deprotonated imide anion that is cofacial to the 2,4-dinitrophenyl ring.  相似文献   

8.
Ni2+ inhibits electron-transport activity of isolated barley chloroplasts and this inhibition of electron transport by Ni2+ is distinctly different from other heavy metal ion (e.g., Pb2+, Cd2+, Zn2+)-induced inhibition of chloroplast function. Ni2+ inactivates Photosystem II (PS II) activity at a lower concentration than that required for the same extent of inhibition of Photosystem I (PS I)-mediated electron flow. Ni2+ induces changes in chlorophyll a (Chl a) emission characteristics and brings about a lowering of the Chl a fluorescence yield, and this lowering of Chl a fluorescence intensity is not relieved by the exogenously supplied electron donor NH2OH which donates electrons very close to the PS II reaction centres. Immobilization of the chloroplast membrane structure with glutaraldehyde fails to arrest the Ni2+-induced loss of PS II activity. Also, Ni2+-treated chloroplasts do not regain the ability to photoreduce 2,6-dichlorophenolindophenol even after washing of chloroplasts with buffer. These results indicate that unlike Zn2+ or Pb2+, Ni2+ induces alterations in the chloroplast photosynthetic apparatus resulting in an irreversible loss of electron-transport activity.  相似文献   

9.
The antiviral drug, phosphonoacetic acid (PAA), forms stable complexes with Mg2+, Ca2+, Cu2+ and Zn2+. Stability constants of these complexes were determined in aqueous solution (0.15 M in KNO3, 37°) by potentiometric titration. Mixed ligand complex formation of Cu2+ and Zn2+ with PAA and glycinate ion, and with PAA and histidinate ion, was studied. In a theoretical model for blood plasma, PAA affects the distribution of Mg2+ and, to a lesser extent, Ca2+.  相似文献   

10.
The effect ot Cu2+ and Ca2+ ions, on the ultraviolet differential (UVD) spectra of single-stranded poly I was studied and the coordination (Δεb) and conformation (Δεc) conponents of the spectra calculated The comparison of Δεb and the UVD spectrum of protonated IMP leads to the conclusion that N(7) ot inosine-5'-monophosphate (IMP) is a coordinating site tor Ca2+ and Cu2+ ions on the polymer bases. The binding ot Ca2+ and Cu2+ ions causes differently directed displacements of the four absorption bands of poly I, which are observed in the wavenumber range (50-34) × 103 cm−1 The calculation of concentration dependencies tor the association constants (K“) ot Ca2+ and Cu2+ ions binding to poly I bases shows that the binding is cooperative The K“ values for the poly I + Ca2+ complex are two orders of magnitude lower than those for the poly 1 + Cu2+ complex At low ion concentrations, binding to the poly I phosphates predominates and increases the degree of the polynucleotide helicity. At higher concentrations the spectra are mainly affected by the ion binding to bases, which results in melting of the helical parts of poly I At Ca2+ concentrations exceeding 10−3 M light-scattering aggregates are formed. The degree of monomer order in them is close to that observed in multistranded helices of poly I  相似文献   

11.
The binding of Cu++ and Zn++ ions to three polypeptides containing Glu and Tyr residues, (Glu Tyr Glu)n, (Glu-Glu-Tyr-Glu)n and (Glu-Tyr-Tyr-Glu)n has been investigated by absorption spectroscopy, fluorescence and circular dichroism. Difference absorption spectra show that Zn+- slightly perturbs the absorption spectrum of the tyrosyl residue whereas Cu++ binding is accompanied by the appearance of a strong absorption band around 245 nm. The fluorescence of the tyrosyl residue is enhanced by Zn++ ions while it is quenched by Cu++ ions. Cation binding induces a conformational change of the polypeptides from a random coil to an -helix, Mg++ ions do not elicit any of these phenomena.  相似文献   

12.
The amylases produced by a Bacillus stearothermophilus were purified through a series of four steps. Two separable enzyme fractions having starch hydrolysing activity were eluted from a DEAE-cellulose column by NaCl gradient elution. The homogeneity of the purified enzymes was checked on polyacrylamide gel electrophoresis. The product formation studies indicated that fraction I was an -amylase whereas fraction II was a β-amylase. The molecular weights were determined to be 48 000 and 57 000 and the carbohydrate moiety was found to be 13.2 and 0.8% for - and β-amylase, respectively. The protein digest of these enzymes indicated a total number of 15 amino acids with aspartic and glutamic acid showing the highest value. The purified amylase showed maximal activity at 80°C and pH 6.9. Fe3+, Cd2+, Pb2+, Hg2+, Ni2+ and Ag1+ were potent inhibitors whereas Zn2+, Mg2+, Mn2+ and Al3+ were mild inhibitors. Ca2+, Ba2+, Sr2+ and K+ stimulated amylase activity in the order of Ca2+ > Ba2+ > Sr2+ > K+. PCMB, EDTA and sodium iodoacetate were inhibitory whereas glutathione (GSH) and cysteine afforded protection of enzyme activity. EDTA showed dose-dependent noncompetitive inhibition of both - as well as β-amylase activities. EDTA inhibition was reversed by the addition of Ca2+ and PCMB inhibition by the addition of glutathione (reduced). The Km for - and β-amylases were found to be 1.05 and 1.25 mg starch per ml, respectively.  相似文献   

13.
The use of different chemically modified cassava waste biomass for the enhancement of the adsorption of three metal ions Cd, Cu and Zn from aqueous solution is reported in this paper. Treating with different concentrations of thioglycollic acid modified the cassava waste biomass.

The sorption rates of the three metals were 0.2303 min−1 (Cd2+), 0.0051 min−1 (Cu2+), 0.0040 min−1 (Zn2+) and 0.109 min−1 (Cd2+), 0.0069 min−1 (Cu2+), 0.0367 min−1 (Zn2+) for 0.5 and 1.00 M chemically modified levels, respectively. The adsorption rates were quite rapid and within 20–30 min of mixing, about 60–80% of these ions were removed from the solutions by the biomass and that chemically modifying the binding groups in the biomass enhanced its adsorption capacity towards the three metals. The results further showed that increased concentration of modifying reagent led to increased incorporation, or availability of more binding groups, in the biomass matrix, resulting in improved adsorptivity of the cassava waste biomass. The binding capacity study showed that the cassava waste, which is a serious environmental nuisance, due to foul odour released during decomposition, has the ability to adsorb trace metals from solutions.  相似文献   


14.
胡杨是我国西北荒漠地区特有的、对多种非生物逆境具有高抗逆性的树种,但其相关微生物的生态和生理功能研究还比较缺乏.本文从新疆沙雅地区原始胡杨林根际土壤中分离出重金属抗性细菌共72株.其中具有单一重金属(Cu2+、Ni2+、Pb2+或Zn2+)抗性的细菌菌株50株,有三重以上重金属抗性的菌株9株.将其中5株多重重金属抗性细菌接种至生根的竹柳插条,进行重金属胁迫下的盆栽培养.结果表明: 在铜或锌胁迫下,5株多重重金属抗性细菌对竹柳的生长抑制有不同程度的缓解,其中假单胞菌Z30和贪铜菌N8菌对铜和锌两种胁迫下竹柳生物量的增长与不接菌对照相比均达到显著差异水平.说明在非重金属污染区生长的胡杨根际存在多样性的重金属抗性细菌,其中一些多重重金属抗性菌对改善重金属胁迫下植物的生长有显著作用,具有应用于木本植物-微生物联合修复环境重金属污染的价值.  相似文献   

15.
Detection of heavy metal toxicity using cardiac cell-based biosensor   总被引:2,自引:0,他引:2  
Liu Q  Cai H  Xu Y  Xiao L  Yang M  Wang P 《Biosensors & bioelectronics》2007,22(12):3224-3229
Biosensors incorporating mammalian cells have a distinct advantage of responding in a manner which offers insight into the physiological effect of an analyte. To investigate the potential applications of cell-based biosensors on heavy metal toxicity detection, a novel biosensor for monitoring electrophysiological activity was developed by light-addressable potentiometric sensor (LAPS). Extracellular field potentials of spontaneously beating cardiomyocytes could be recorded by LAPS in the range of 20 μV to nearly 40 μV with frequency of 0.5–3 Hz. After exposed to different heavy metal ions (Hg2+, Pb2+, Cd2+, Fe3+, Cu2+, Zn2+; in concentration of 10 μM), cardiomyocytes demonstrated characteristic changes in terms of beating frequency, amplitude and duration under the different toxic effects of ions in less than 15 min. This study suggests that, with the physiological monitoring, it is possible to use the cardiac cell-based biosensor to study acute and eventually chronic toxicities induced by heavy metal ions in a long-term and no-invasive way.  相似文献   

16.
Silica gel bead coated with macroporous chitosan layer (CTS-SiO2) was prepared, and the metal immobilized affinity chromatographic (IMAC) adsorbents could be obtained by chelating Cu2+, Zn2+, Ni2+ ions, respectively on CTS-SiO2, and trypsin could be adsorbed on the IMAC adsorbent through metal–protein interaction forces. Batch adsorption experiments show that adsorption capacity for trypsin on these IMAC adsorbent variated with change of pH. The maximal adsorption reached when the solution was in near neutral pH in all three IMAC adsorbents. Adsorption isothermal curve indicated that maximal adsorption capacity could be found in the Cu2+-CTS-SiO2 with the value of 4980 ± 125 IU g−1 of the adsorbent, while the maximal adsorption capacity for trypsin on Zn2+ and Ni2+ loaded adsorbent was 3762 ± 68 IU g−1 and 2636 ± 53 IU g−1, respectively. Trypsin immobilized on the IMAC beads could not be desorbed by water, buffer and salt solution if the pH was kept in the range of 5–10, and could be easily desorbed from the IMAC beads by acidic solution and metal chelating species such as EDTA and imidazole. The effect of chelated metal ions species on CTS-SiO2 beads on the activity and stability of immobilized trypsin was also evaluated and discussed. Trypsin adsorbed on Zn-IMAC beads retained highest amount of activity, about 78% of total activity could be retained. Although the Cu-IMAC showed highest affinity for trypsin, only 25.4% of the calculated activity was found on the beads, while the activity recovery found on Ni-IMAC beads was about 37.1%. A remarkable difference on stability of trypsin immobilized on three kinds of metal ion chelated beads during storage period was also found. Activity of trypsin on Cu-IMAC decreased to 24% of its initial activity after 1-week storage at 4 °C, while about 80% activity was retained on both Ni-IMAC and Zn-IMAC beads. Trypsin immobilized on Zn-CTS-SiO2 could effectively digest BSA revealed by HPLC peptide mapping.  相似文献   

17.
Due to contradictions in the literature we have redetermined the acid-base properties of riboflavin (=RiFl; vitamin B2), i.e. 7,8-dimethyl-10-ribityl-isoalloxazine, and of flavin mononucleotide (FMN2−), also known as riboflavin 5′-phosphate, via potentiometric pH titrations (I = 0.1 M, NaNO3; 25 °C). In contrast to various claims, the isoalloxazine ring cannot be protonated at pH > 1, a result in agreement with an early study (pKa = −0.2; L. Michaelis, M.P. Schubert and C.V. Smythe, J. Biol. Chem., 116 (1936) 587–607); deprotonation of the ring system occurs in both compounds with pKa 10. The pKa value of 0.7 determined for the deprotonation of H2(FMN) must be attributed to the release of the first proton from the fully protonated phosphate group; its second proton is released with pKa = 6.18 in agreement with the acidity constants of various other monoprotonated monophosphate esters. The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+ (---M2+) and FMN2− were determined by potentiometric pH titrations in aqueous solution (I = 0.1 M, NaNO3; 25 °C). The log stability constants of all these M(FMN) complexes are about 0.2 log units higher than expected from the basicity of the phosphate group. This slight stability increase cannot be attributed to the formation of a seven-membered chelate involving the ribit-hydroxy group at C-4′ as the stability constants for the M2+ 1:1 complexes of glycerol 1-phosphate (G1P2−) demonstrate: G1P2− contains the same structural unit which would also allow in this case the formation of the mentioned seven-membered chelate; however, the stability of the M(G1P) complexes is solely determined by the basicity of the phosphate group. Hence, in agreement with earlier conclusions (J. Bidwell, J. Thomas and J. Stuehr, J. Am. Chem. Soc., 108 (1986) 820–825) regarding Ni(FMN) one must conclude that the slight stability increase of the M(FMN) complexes has to be attributed to the isoalloxazine ring. The equality of the stability increase of the complexes for all the mentioned ten metal ions precludes its attribution to an interaction with an N site and makes a specific interaction with an O site also somewhat unlikely. In addition, carbonyl oxygens appear as not very favorable for the formation of macrochelates by a further interaction with already phosphate-coordinated metal ions. Therefore, we propose that the slight but significant stability increase originates from M(FMN) species (with a formation degree of about 30%) in which the hydrophobic flavin residue is close to the metal ion, thereby lowering the ‘effective’ dielectric constant in the microenvironment of the metal ion and thus indirectly promoting the −PO32−/M2+ interaction.  相似文献   

18.
Mousumi Ghosh  Geeta Nanda   《FEBS letters》1993,330(3):275-278
Heating of Aspergillus β-xylosidase at 85°C ± 1°C and pH 5.5–6.0 (optimum for activity), causes irreversible, covalent thermoinactivation of the enzyme, involving oxidation of the thiol groups that are required for catalysis. Exogenous addition of cysteine, DTT, GSH and mercaptoethanol stabilizes the enzyme by extending its half-life. A similar effect is also exhibited by bivalent cations like Mg2+, Mn2+, Co2+, Ca2+and Zn2+ while, on the other hand Cu2+ accelerates thermoinactivation. Chemical modification of crude β-xylosidase with cross-linking agents like glutaraldehyde or covalent immobilization to a nonspecific protein like gelatin and BSA also enhances enzyme thermostability. These results suggest that addition of thiols and bivalent metal ions to a crude β-xylosidase preparation or immobilization/chemical modification enhances its thermal stability, thus preventing loss of catalytic activity at elevated temperatures.  相似文献   

19.
Data are reported for the binding of Ni2+, Co2+, and Mg2+ to the B-form of double-stranded poly(dG-dC) at ionic strength conditions I = 0.001 M, 0.01 M, and 0.1 M. The apparent binding constants for Ni2+ and Co2+ are about the same and are 2- to 3-fold higher than those for Mg2+. Kinetic studies indicate that Mg2+ binds to the polynucleotide mainly (or solely) as a mobile cloud (electrostatically, outer-sphere), whereas the transition metal ions undergo site binding (inner-sphere coordination) with poly(dG-dC). The kinetic data suggest that an Ni2+ ion coordinates to more than one binding site at the polynucleotide, presumably to G-N7 and a phosphate group.

At low ionic strength conditions the addition of Ni2+ induces a B → Z conformational transition in poly(dG-dC). As demonstrated by UV absorption and CD spectroscopy, the transition occurs at I = 0.001 M already when 3 × 10−5 – 7 × 10−5 M of Ni2+ are added to 8 × 10−5 M (in monomeric units) of poly(dG-dC), and at I = 0.01 M between 2.5 × 10−4 and 4.5 × 10−4 M of Ni2+. Using murexide as an indicator of the concentration of free Ni2+ ions, the amount of Ni2+ which is bound to the polynucleotide could be determined. At I = 0.001 M it was established that the B → Z transition begins when 1 Ni2+ is bound coordinatively per four base pairs, and the transition is complete when 1 Ni2+ is bound coordinatively per three base pairs. It is this coordinated Ni2+ which induces the B → Z transition.  相似文献   


20.
Procedures are described by which troponin and tropomyosin can be isolated from cardiac muscle rapidly, with minimal damage by oxidation. Cardiac relaxing proteins inhibit actomyosin ATPase activity in the presence of ethyleneglycoltetraacetic acid (EGTA), and permit graded stimulation by Ca2+. This stimulation is independent of preexisting inhibition, and greater than that obtained with skeletal proteins. Characteristics of Scatchard plots for Ca2+ binding suggest that troponin contains one class of sites which interact at high fractional occupancy. Interaction appears to be enhanced by tropomyosin. Mean values for the estimated maximum affinity and capacity of six canine cardiac troponin preparations were: 4.92·106 M−1, and 21.58·10−6 moles·g−1. Values for skeletal troponin were not significantly different. Native tropomyosin bound about half as much Ca2+ per g, with maximum affinity the same as troponin. Pure tropomyosin bound no Ca2+. Cardiac and skeletal proteins differ in that the former are much more labile, and more readily influenced by ions and drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号