首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial outer membrane proteins are synthesized without a cleavable presequence but instead contain segments responsible for mitochondrial targeting and membrane integration within the molecule: the transmembrane segment (TMS) and N- or C-terminal flanking segment. We analyzed targeting and integration of Tom5, a C-tail anchor protein associated with the preprotein translocase of the outer membrane, to the yeast mitochondrial outer membrane in vivo using green fluorescent protein as the reporter and compared the signal with other signals for proteins dispersed in the membrane. The functional assembly of Tom5 into the TOM complex was assessed by blue native PAGE and complementation of temperature-sensitive deltatom5 cells. Correct targeting and assembly required (i). an appropriate length TMS rather than hydrophobicity, (ii). a proline residue located at correct position in the TMS and specific residues near the proline, and (iii). that, in contrast to proteins dispersed in the outer membrane, the positive C-terminal segment was dispensable. Based on these findings, we constructed green fluorescent protein fusions with a C-terminal TMS in which the deduced sequences (minimum: Ser-Pro-Met) were inserted at an appropriate position within artificial Leu-Ala repeats. They were targeted to mitochondria and complemented the temperature-sensitive growth phenotype of deltatom5 yeast cells. The membrane-targeting mechanism of Tom5 appears to be distinct from that for proteins that are dispersed in the outer membrane.  相似文献   

2.
Tail-anchored proteins are inserted into intracellular membranes via a C-terminal transmembrane domain. The topology of the protein is such that insertion must occur post-translationally, since the insertion sequence is not available for membrane insertion until after translation of the tail-anchored polypeptide is completed. Here, we show that the targeting information in one such tail-anchored protein, translocase in the outer mitochondrial membrane 22, is contained in a short region flanking the transmembrane domain. An equivalent region is sufficient to specify the localisation of Bcl2 and SNARE proteins to the secretory membranes. We discuss the targeting process for directing members of this protein family to the secretory and mitochondrial membranes in vivo.  相似文献   

3.
Tom20 is a major receptor of the mitochondrial preprotein translocation system and is bound to the outer membrane through the NH(2)-terminal transmembrane domain (TMD) in an Nin-Ccyt orientation. We analyzed the mitochondria-targeting signal of rat Tom20 (rTom20) in COS-7 cells, using green fluorescent protein (GFP) as the reporter by systematically introducing deletions or mutations into the TMD or the flanking regions. Moderate TMD hydrophobicity and a net positive charge within five residues of the COOH-terminal flanking region were both critical for mitochondria targeting. Constructs without net positive charges within the flanking region, as well as those with high TMD hydrophobicity, were targeted to the ER-Golgi compartments. Intracellular localization of rTom20-GFP fusions, determined by fluorescence microscopy, was further verified by cell fractionation. The signal recognition particle (SRP)-induced translation arrest and photo-cross-linking demonstrated that SRP recognized the TMD of rTom20-GFP, but with reduced affinity, while the positive charge at the COOH-terminal flanking segment inhibited the translation arrest. The mitochondria-targeting signal identified in vivo also functioned in the in vitro system. We conclude that NH(2)-terminal TMD with a moderate hydrophobicity and a net positive charge in the COOH-terminal flanking region function as the mitochondria-targeting signal of the outer membrane proteins, evading SRP-dependent ER targeting.  相似文献   

4.
Tom22 is a preprotein receptor and organizer of the mitochondrial outer membrane translocase complex (TOM complex). Rat Tom22 (rTOM22) is a 142-residue protein, embedded in the outer membrane through the internal transmembrane domain (TMD) with 82 N-terminal residues in the cytosol and 41 C-terminal residues in the intermembrane space. We analyzed the signals that target rTOM22 to the mitochondrial outer membrane and assembly into the TOM complex in cultured mammalian cells. Deletions or mutations were systematically introduced into the molecule, and the intracellular localization of the mutant constructs in HeLa cells was examined by confocal microscopy and cell fractionation. Their assembly into the TOM complex was also examined using blue native gel electrophoresis. These experiments revealed three separate structural elements: a cytoplasmic 10-residue segment with an acidic alpha-helical structure located 30 residues upstream of the TMD (the import sequence), TMD with an appropriate hydrophobicity, and a 20-residue C-terminal segment located 22 residues downstream of the TMD (C-tail signal). The import sequence and TMD were both essential for targeting and integration into the TOM complex, whereas the C-tail signal affected the import efficiency. The import sequence combined with foreign TMD functioned as a mitochondrial targeting and anchor signal but failed to integrate the construct into the TOM complex. Thus, the mitochondrial-targeting and TOM integration signal could be discriminated. A yeast two-hybrid assay revealed that the import sequence interacted with two intramolecular elements, the TMD and C-tail signal, and that it also interacted with the import receptor Tom20.  相似文献   

5.
The proapoptotic protein BAX contains a single predicted transmembrane domain at its COOH terminus. In unstimulated cells, BAX is located in the cytosol and in peripheral association with intracellular membranes including mitochondria, but inserts into mitochondrial membranes after a death signal. This failure to insert into mitochondrial membrane in the absence of a death signal correlates with repression of the transmembrane signal-anchor function of BAX by the NH2-terminal domain. Targeting can be instated by deleting the domain or by replacing the BAX transmembrane segment with that of BCL-2. In stimulated cells, the contribution of the NH2 terminus of BAX correlates with further exposure of this domain after membrane insertion of the protein. The peptidyl caspase inhibitor zVAD-fmk partly blocks the stimulated mitochondrial membrane insertion of BAX in vivo, which is consistent with the ability of apoptotic cell extracts to support mitochondrial targeting of BAX in vitro, dependent on activation of caspase(s). Taken together, our results suggest that regulated targeting of BAX to mitochondria in response to a death signal is mediated by discrete domains within the BAX polypeptide. The contribution of one or more caspases may reflect an initiation and/or amplification of this regulated targeting.  相似文献   

6.
7.
We have previously shown that the first 147 N-terminal residues of the rat liver carnitine palmitoyltransferase 1 (CPT1), encompassing its two transmembrane (TM) segments, specify both mitochondrial targeting and anchorage at the outer mitochondrial membrane (OMM). In the present study, we have identified the precise import sequence in this polytopic OMM protein. In vitro import studies with fusion and deletion CPT1 proteins demonstrated that none of its TM segments behave as a signal anchor sequence. Analysis of the regions flanking the TM segments revealed that residues 123-147, located immediately downstream of TM2, function as a noncleavable, matrix-targeting signal. They specify mitochondrial targeting, whereas the hydrophobic TM segment(s) acts as a stop-transfer sequence that stops and anchors the translocating CPT1 into the OMM. Heterologous expression in Saccharomyces cerevisiae of several deleted CPT1 proteins not only confirms the validity of the "stop-transfer" import model but also indicates that residues 1-82 of CPT1 contain a putative microsomal targeting signal whose cellular significance awaits further investigation. Finally, we identified a highly folded core within the C-terminal domain of CPT1 that is hidden in the entire protein by its cytosolic N-terminal residues. Functional analysis of the deleted CPT1 proteins indicates that this folded C-terminal core, which may belong to the catalytic domain of CPT1, requires TM2 for its correct folding achievement and is in close proximity to residues 1-47.  相似文献   

8.
Setoguchi K  Otera H  Mihara K 《The EMBO journal》2006,25(24):5635-5647
C-tail-anchored (C-TA) proteins are anchored to specific organelle membranes by a single transmembrane segment (TMS) at the C-terminus, extruding the N-terminal functional domains into the cytoplasm in which the TMS and following basic segment function as the membrane-targeting signals. Here, we analyzed the import route of mitochondrial outer membrane (MOM) C-TA proteins, Bak, Bcl-XL, and Omp25, using digitonin-permeabilized HeLa cells, which provide specific and efficient import under competitive conditions. These experiments revealed that (i) C-TA proteins were imported to the MOM through a common pathway independent of the components of the preprotein translocase of the outer membrane, (ii) the C-TA protein-targeting signal functioned autonomously in the absence of cytoplasmic factors that specifically recognize the targeting signals and deliver the preproteins to the MOM, (iii) the function of a cytoplasmic chaperone was required if the cytoplasmic domains of the C-TA proteins assumed an import-incompetent conformation, and intriguingly, (iv) the MOM-targeting signal of Bak, in the context of the Bak molecule, required activation by the interaction of its cytoplasmic domain with VDAC2 before MOM targeting.  相似文献   

9.

Background

One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear.

Methodology/Principal Findings

To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1.

Conclusions/Significance

Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.  相似文献   

10.
We previously found that the peroxisomal citrate synthase of Saccharomyces cerevisiae, Cit2p, contains a cryptic targeting signal for both peroxisomes (PTS) and mitochondria (MTS) within its 20-amino acid N-terminal segment [Lee et al. (2000) J. Biochem. 128, 1059-1072]. In the present study, the fine structure of the cryptic signal was scrutinized using green fluorescent protein fusions led by variants of the N-terminal segment. The minimum ranges of the cryptic signals for mitochondrial and peroxisomal targeting were shown to consist of the first 15- and 10-amino acid N-terminal segments, respectively. Substitution of the 3rd Val, 6th Leu, 7th Asn, or 8th Ser with Ala abolished the cryptic MTS function, however, no single substitution causing an obvious defect in PTS function was found. Neither the 15-amino acid N-terminal segment nor the C-terminal SKL sequence (PTS1) was necessary for Cit2p to restore the glutamate auxotrophy caused by the double Deltacit1 Deltacit2 mutation. The Cit2p variant lacking PTS1 [Cit2(DeltaSKL)p] partially restored the growth of both the Deltacit1 Deltacit2 and Deltacit1 mutants on acetate, while that carrying intact PTS1 or lacking the N-terminal segment [Cit2p, Cit2((DeltaNDeltaSKL))p, and Cit2((DeltaN))p] did not. It is thus suggested that the potential of the N-terminal segment as an ambidextrous targeting signal can be unmasked by deletion of PTS1.  相似文献   

11.
The Na(+)/H(+) exchanger isoform 1 is an integral membrane protein that regulates intracellular pH by exchanging one intracellular H(+) for one extracellular Na(+). It is composed of an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the structural and functional aspects of the critical transmembrane segment VII (TM VII, residues 251-273) by using alanine scanning mutagenesis and high resolution NMR. Each residue of TM VII was mutated to alanine, the full-length protein expressed, and its activity characterized. TM VII was sensitive to mutation. Mutations at 13 of 22 residues resulted in severely reduced activity, whereas other mutants exhibited varying degrees of decreases in activity. The impaired activities sometimes resulted from low expression and/or low surface targeting. Three of the alanine scanning mutant proteins displayed increased, and two displayed decreased resistance to the Na(+)/H(+) exchanger isoform 1 inhibitor EMD87580. The structure of a peptide of TM VII was determined by using high resolution NMR in dodecylphosphocholine micelles. TM VII is predominantly alpha-helical, with a break in the helix at the functionally critical residues Gly(261)-Glu(262). The relative positions and orientations of the N- and C-terminal helical segments are seen to vary about this extended segment in the ensemble of NMR structures. Our results show that TM VII is a critical transmembrane segment structured as an interrupted helix, with several residues that are essential to both protein function and sensitivity to inhibition.  相似文献   

12.
We investigated the dual targeting signal of pea glutathione reductase (GR) that had been previously shown to be capable of targeting the passenger protein phosphinothricin acetyl transferase to mitochondria and chloroplasts in vivo. We confirmed that GR was imported into mitochondria and chloroplasts in vitro. Rupture of the outer mitochondrial membrane after the import assay indicated that GR was imported into both the intermembrane space and the matrix. Changing positive and hydrophobic residues in the targeting signal we investigated if dual targeting of GR was due to an overlapping or separate signal. Overall single mutations had a greater effect on mitochondrial import compared to chloroplasts, especially those on positive residues. Precursors containing both positive and hydrophobic residue mutations (double mutants) indicated that there might be some redundancy in targeting information for chloroplastic import as double mutants had a greater effect than predicted from the single mutants. Fusion of the targeting signal to the green fluorescent protein (GFP) followed by transient transformation indicated that this signal was only capable of targeting this passenger protein to plastids. Additionally, fusion of the complete coding sequence of GR to GFP also resulted in an exclusive chloroplastic localization. Mutations in the targeting signal that reduced import into plastids in vitro also displayed altered patterns of GFP localizations in vivo. These results indicate that some residues in the signal for dual localisation of GR play a role in both mitochondrial and chloroplastic import, and thus the signal is overlapping.  相似文献   

13.
We have investigated the signal sequence for mitochondrial transport of mutants (I12T, 78insC, IVS2-2a-->c, 338G-->C, R152C, 470A-->C, and L401F) and the wild type protoporphyrinogen oxidase (PPOX), which is the penultimate enzyme in the heme biosynthesis. We constructed the corresponding green fluorescent protein fusion proteins and studied their intracellular localization in COS-1 cells. We showed that 28 amino acids in the amino terminus of PPOX contain an independently functioning signal for mitochondrial targeting. The experiments with amino-terminally truncated green fluorescent protein fusion proteins revealed that amino acids 25-477 of PPOX contained an additional mitochondrial targeting signal(s). We constructed a structural model for the interaction between the amino-terminal end of PPOX and the putative mitochondrial receptor protein Tom20. The model suggests that leucine and isoleucine residues Leu-8, Ile-12, and Leu-15 forming an alpha-helical hydrophobic motif, LXXXIXXL, were crucial for the recognition of the targeting signal. The validity of the model was tested using mutants L8Q, I12T, and L15Q disrupting the hydrophobic surface of the LXXXIXXL helix. The results from in vitro expression studies and molecular modeling were in accordance supporting the hypothesis that the recognition of the mitochondrial targeting signal is dependent on hydrophobic interactions between the targeting signal and the mitochondrial receptor.  相似文献   

14.
Protein targeting to the endoplasmic reticulum is mediated by signal or signal-anchor sequences. They also play an important role in protein topogenesis, because their orientation in the translocon determines whether their N- or C-terminal sequence is translocated. Signal orientation is primarily determined by charged residues flanking the hydrophobic core, whereby the more positive end is predominantly positioned to the cytoplasmic side of the membrane, a phenomenon known as the "positive-inside rule." We tested the role of conserved charged residues of Sec61p, the major component of the translocon in Saccharomyces cerevisiae, in orienting signals according to their flanking charges by site-directed mutagenesis by using diagnostic model proteins. Mutation of R67, R74, or E382 in Sec61p reduced C-terminal translocation of a signal-anchor protein with a positive N-terminal flanking sequence and increased it for signal-anchor proteins with positive C-terminal sequences. These mutations produced a stronger effect on substrates with greater charge difference across the hydrophobic core of the signal. For some of the substrates, a charge mutation in Sec61p had a similar effect as one in the substrate polypeptides. Although these three residues do not account for the entire charge effect in signal orientation, the results show that Sec61p contributes to the positive-inside rule.  相似文献   

15.
Targeting signals direct proteins to their extra- or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization ("NtraC model") in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals.  相似文献   

16.
Expression of the proapoptotic protein Bax under the control of a GAL10 promoter in Saccharomyces cerevisiae resulted in galactose-inducible cell death. Immunofluorescence studies suggested that Bax is principally associated with mitochondria in yeast cells. Removal of the carboxyl-terminal transmembrane (TM) domain from Bax [creating Bax (deltaTM)] prevented targeting to mitochondrial and completely abolished cytotoxic function in yeast cells, suggesting that membrane targeting is crucial for Bax-mediated lethality. Fusing a TM domain from Mas70p, a yeast mitochondrial outer membrane protein, to Bax (deltaTM) restored targeting to mitochondria and cytotoxic function in yeast cells. Deletion of four well-conserved amino acids (IGDE) from the BH3 domain of Bax ablated its ability to homodimerize and completely abrogated lethality in yeast cells. In contrast, several Bax mutants which retained ability to homodimerize (deltaBH1, deltaBH2, and delta1-58) also retained at least partial lethal function in yeast cells. In coimmunoprecipitation experiments, expression of the wild-type Bax protein in Rat-1 fibroblasts and 293 epithelial cells induced apoptosis, whereas the Bax (deltaIGDE) mutant failed to induce apoptosis and did not associate with endogenous wild-type Bax protein. In contrast to yeast cells, Bax (deltaTM) protein retained cytotoxic function in Rat-1 and 293 cells, was targeted largely to mitochondria, and dimerized with endogenous Bax in mammalian cells. Thus, the dimerization-mediating BH3 domain and targeting to mitochondrial membranes appear to be essential for the cytotoxic function of Bax in both yeast and mammalian cells.  相似文献   

17.
The cyclooxygenase activity of the two prostaglandin H synthase (PGHS) isoforms, PGHS-1 and -2, is a major control element in prostanoid biosynthesis. The two PGHS isoforms have 60% amino acid identity, with prominent differences near the C-terminus, where PGHS-2 has an additional 18-residue insert. Some mutations of the C-terminal residue in PGHS-1 and -2 have been found to disrupt catalytic activity and/or intracellular targeting of the proteins, but the relationship between C-terminal structure and function in the two isoforms has been poorly defined. Crystallographic data indicate the PGHS-1 and -2 C-termini are positioned to interact with the endoplasmic reticulum (ER) membrane, although the C-terminal segment structure was not resolved for either isoform. We constructed a series of C-terminal substitution, deletion, and insertion mutants of human PGHS-1 and -2 and evaluated the effects on cyclooxygenase activity and intracellular targeting in transfected COS-1 cells expressing the recombinant proteins. PGHS-1 cyclooxygenase activity was strongly disrupted by C-terminal substitutions and deletions, but not by elongation of the C-terminal segment, even when the ultimate residue was altered. Similar alterations to PGHS-2 had markedly less effect on cyclooxygenase activity. The results indicate that the functioning of the longer C-terminal segment in PGHS-2 is distinctly more tolerant of structural change than the shorter PGHS-1 C-terminal segment. C-Terminal substitutions or deletions did not change the subcellular localization of either isoform, even at short times after transfection, indicating that neither C-terminal segment contains indispensable intracellular targeting signals.  相似文献   

18.
The BCS1 protein is anchored in the mitochondrial inner membrane via a single transmembrane domain and has an N(out)-C(in) topology. Unlike the majority of nuclear encoded mitochondrial preproteins, the BCS1 protein does not contain an N-terminal targeting sequence. A positively charged segment of amino acids which is located immediately C-terminal to the transmembrane domain acts as an internal targeting signal. In order to function, we postulate that this sequence co-operates with the transmembrane domain to form a tight hairpin loop structure. This loop is translocated across the inner membrane via the MIM/mt-Hsp70 machinery in a membrane potential-dependent manner. This novel mechanism of import and sorting of the BCS1 protein is proposed to represent a more general mechanism used by a number of inner membrane proteins.  相似文献   

19.
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral ‘triple gene block’ (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.  相似文献   

20.
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号