首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High serum levels of C-reactive protein (CRP), a strong predictor of cardiovascular events, are documented in patients with type 2 diabetes. Accumulating evidence suggests that CRP could directly promote arterial damage. To determine the role of CRP in diabetic atherosclerosis, we examined the effect of CRP on the expression of macrophage lipoprotein lipase (LPL), a proatherogenic molecule upregulated in type 2 diabetes. Treatment of human macrophages with native CRP increased, in a dose- and time-dependent manner, LPL protein expression and secretion. Modified CRP reproduced these effects. Preincubation of human macrophages with antioxidants, protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) inhibitors prevented CRP-induced LPL expression. Exposure of human macrophages to CRP further increased intracellular reactive oxygen species generation, classic PKC isozymes expression, and extracellular signal-regulated protein kinase 1/2 phosphorylation. In CRP-treated J774 macrophages, increased macrophage LPL mRNA levels and enhanced binding of nuclear proteins to the activated protein-1 (AP-1)-enhancing element were observed. These effects were prevented by antioxidants, as well as by PKC, MAPK, and AP-1 inhibitors. These data show for the first time that CRP directly increases macrophage LPL expression and secretion. Given the predominant role of macrophage LPL in atherogenesis, LPL might represent a novel factor underlying the adverse effect of CRP on the diabetic vasculature.  相似文献   

2.
Modulation of human neutrophil function by C-reactive protein   总被引:3,自引:0,他引:3  
Investigation of the effect of C-reactive protein (CRP), an acute-phase reactant, on the functional capacities of human neutrophils was carried out as the basis for elucidating the biological function of C-reactive protein. An initial stimulation at low concentrations, followed by inhibition of superoxide production, and secretion of vitamin-B12-binding protein in the presence of two stimulants, phorbol myristate acetate and concanavalin A, and of neutrophil chemotaxis with increasing concentration of CRP was observed. Correlation between modulation of cell function, at least at relatively high CRP concentrations (greater than 50 micrograms/ml) and an increase in the intracellular level of cAMP is suggested. CRP was also found to enhance neutrophil phagocytosis of particles not containing phosphorylcholine, the native CRP ligand. The proposed role of CRP in neutrophil function is one of regulation and as a negative feedback for potential cytotoxic neutrophil functions.  相似文献   

3.
4.
Chen L  Jia H  Tian Q  Du L  Gao Y  Miao X  Liu Y 《Photosynthesis research》2012,112(2):141-148
The physiological significance of photosystem II (PSII) core protein phosphorylation has been suggested to facilitate the migration of oxidative damaged D1 and D2 proteins, but meanwhile the phosphorylation seems to be associated with the suppression of reactive oxygen species (ROS) production, and it also relates to the degradation of PSII reaction center proteins. To more clearly elucidate the possible protecting effect of the phosphorylation on oxidative damage of D1 protein, the degradation of oxidized D1 protein and the production of superoxide anion in the non-phosphorylated and phosphorylated PSII membranes were comparatively detected using the Western blotting and electron spin resonance spin-trapping technique, respectively. Obviously, all of three ROS components, including superoxide anion, hydrogen peroxide and hydroxyl radical are responsible for the degradation of oxidized D1 protein, and the protection of the D1 protein degradation by phosphorylation is accompanied by the inhibition of superoxide anion production. Furthermore, the inhibiting effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a competitor to Q(B), on superoxide anion production and its protecting effect on D1 protein degradation are even more obvious than those of phosphorylation. Both DCMU effects are independent of whether PSII membranes are phosphorylated or not, which reasonably implies that the herbicide DCMU and D1 protein phosphorylation probably share the same target site in D1 protein of PSII. So, altogether it can be concluded that the phosphorylation of D1 protein reduces the oxidative damage of D1 protein by decreasing the production of superoxide anion in PSII membranes under high light.  相似文献   

5.
The effects of C-reactive protein (CRP), the prototypical acute-phase reactant were studied on human polymorphonuclear leukocytes (PMNL) challenged with N-formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF). CRP at 8-64 micrograms/ml concentrations inhibited degranulation and superoxide production by PMNL in time-, and dose-dependent manner and stabilized PMNL membranes against the lytic effect of lysophosphatidylcholine. CRP was also capable of binding PAF and in lesser extent fMLP. Furthermore, CRP, 32 micrograms/ml, diminished specific binding of [3H]-fMLP and [3H]-PAF to PMNL. These findings imply that CRP may play an important protective role during the early phase of acute inflammatory reactions.  相似文献   

6.
Human NADH CoQ oxidoreductase is composed of a total of 43 subunits and has been demonstrated to be a major site for the production of superoxide by mitochondria. Incubation of rat heart mitochondria with ATP resulted in the phosphorylation of two mitochondrial membrane proteins, one with a M(r) of 6 kDa consistent with the NDUFA1 (MWFE), and one at 18kDa consistent with either NDUFS4 (AQDQ) or NDUFB7 (B18). Phosphorylation of both subunits was enhanced by cAMP derivatives and protein kinase A (PKA) and was inhibited by PKA inhibitors (PKAi). When mitochondrial membranes were incubated with pyruvate dehydrogenase kinase, phosphorylation of an 18kDa protein but not a 6kDa protein was observed. NADH cytochrome c reductase activity was decreased and superoxide production rates with NADH as substrate were increased. On the other hand, with protein kinase A-driven phosphorylation, NADH cytochrome c reductase was increased and superoxide production decreased. Overall there was a 4-fold variation in electron transport rates observable at the extremes of these phosphorylation events. This suggests that electron flow through complex I and the production of oxygen free radicals can be regulated by phosphorylation events. In light of these observations we discuss a potential model for the dual regulation of complex I and the production of oxygen free radicals by both PKA and PDH kinase.  相似文献   

7.
Phosphorylation of proteins was examined in guinea pig polymorphonuclear leukocytes in relation to the effects of membrane-perturbing agents, which stimulate superoxide anion production, and their inhibitors. The phosphorylation was detected by 32P autoradiography after separation by two-dimensional electrophoresis of proteins phosphorylated in 32P-preloaded cells. Though phosphorylation of various proteins was stimulated by each of the membrane-perturbing agents, the stimulation was especially marked in six proteins. Phorbol myristate acetate and digitonin enhanced the phosphorylation of the six proteins, while myristate and concanavalin A increased the phosphorylation of five and three proteins, respectively, out of the six proteins. p-Bromophenacyl bromide, an inhibitor of phospholipase A2, inhibited the stimulatory effect of phorbol myristate acetate on both superoxide anion production and protein phosphorylation. Trifluoperazine, a calmodulin inhibitor, also inhibited the effect of phorbol myristate acetate on both, except for an increase in the phosphorylation of one out of the six proteins. alpha-Methylmannoside, an inhibitor of concanavalin A binding, inhibited the stimulation of the phosphorylation of the three proteins by concanavalin A. The results indicate that the activation of superoxide anion production by the membrane-perturbing agents in guinea pig polymorphonuclear leukocytes is accompanied by the phosphorylation of, at least some of, these six proteins.  相似文献   

8.
We examined the effects of newly exploited amiloride analogs on protein phosphorylation and serotonin secretion induced by various agonists in human platelets. 3', 4'-dichlorobenzamil (DCB) and to a lesser extent, 2', 4'-dimethylbenzamil (DMB), which in many cells highly specific inhibitors of Na+/Ca2+-pump, inhibited the phosphorylation of 47K- and 20K-dalton proteins and serotonin secretion in human platelets independently of the action on the pump. DCB also induced dephosphorylation of 47K and 20K after the phosphorylation of these proteins by thrombin and released serotonin by itself.  相似文献   

9.
Although few epidemiological studies have demonstrated that C-reactive protein (CRP) is related to insulin resistance, no study to date has examined the molecular mechanism. Here, we show that recombinant CRP attenuates insulin signaling through the regulation of spleen tyrosine kinase (Syk) on small G-protein RhoA, jun N-terminal kinase (JNK) MAPK, insulin receptor substrate-1 (IRS-1), and endothelial nitric oxide synthase in vascular endothelial cells. Recombinant CRP suppressed insulin-induced NO production, inhibited the phosphorylation of Akt and endothelial nitric oxide synthase, and stimulated the phosphorylation of IRS-1 at the Ser307 site in a dose-dependent manner. These events were blocked by treatment with an inhibitor of RhoA-dependent kinase Y27632, or an inhibitor of JNK SP600125, or the transfection of dominant negative RhoA cDNA. Next, anti-CD64 Fcgamma phagocytic receptor I (FcgammaRI), but not anti-CD16 (FcgammaRIIIa) or anti-CD32 (FcgammaRII) antibody, partially blocked the recombinant CRP-induced phosphorylation of JNK and IRS-1 and restored, to a certain extent, the insulin-stimulated phosphorylation of Akt. Furthermore, we identified that recombinant CRP modulates the phosphorylation of Syk tyrosine kinase in endothelial cells. Piceatannol, an inhibitor of Syk tyrosine kinase, or infection of Syk small interference RNA blocked the recombinant CRP-induced RhoA activity and the phosphorylation of JNK and IRS-1. In addition, piceatannol also restrained CRP-induced endothelin-1 production. We conclude that recombinant CRP induces endothelial insulin resistance and dysfunction, and propose a new mechanism by which recombinant CRP induces the phosphorylation of JNK and IRS-1 at the Ser307 site through a Syk tyrosine kinase and RhoA-activation signaling pathway.  相似文献   

10.
The effect of human C-reactive protein (CRP) on macrophage function was studied in an assay of superoxide anion (O2-) production. Peritoneal exudate macrophages (PEM) of guinea pigs exposed in vitro to various doses of CRP for 72 hr resulted in the development of O2- production dose-dependently, measured by increases in superoxide dismutase-inhibitable nitro blue tetrazolium reduction. The O2--producing activity of PEM cultured without CRP, used as a control, decreased markedly in proportion to incubation time. The O2- production by PEM exposed to CRP for 18 hr when control PEM were still high in O2- production, was decreased by larger doses of CRP, while PEM cultured without CRP for 72 hr, when O2- production by control PEM was very low, followed by incubation with CRP for another 18 hr, produced O2- CRP-dose-dependently as in the case of that observed after 72-hr incubation with CRP. These results indicate that CRP is capable of activating macrophages and acts on macrophage function as a modulator. CRP possesses migration inhibitory factor (MIF)-like activity (as reported in the preceding paper) and also macrophage-activating factor (MAF)-like activity, indicating that CRP may play a functional role at the site of inflammation and tissue damage by accumulating and activating macrophages.  相似文献   

11.
As HL-60 cells matured along the granulocytic pathway, phorbol diester-induced superoxide anion production was compared to phorbol diester-induced protein phosphorylation using an in vitro phosphorylation technique. Maturation was induced by 0, 2, 4, or 6 days incubation with dimethyl sulfoxide (Me2SO). In 0 day Me2SO HL-60 cells, phorbol 12-myristate 13-acetate induced phosphorylation of protein pp29 (Mr = 28,600) and to a lesser extent protein pp76 (Mr = 76,300). With increased time of Me2SO incubation, phorbol 12-myristate 13-acetate induced phosphorylation of pp212 (Mr = 211,800), pp134 (Mr = 134,200), and pp76, whereas the phosphorylation of pp29 did not change appreciably. In close agreement with this increase in protein phosphorylation was the observed increase in phorbol diester-induced superoxide anion formation. Morphological characterization of cells during Me2SO-induced differentiation reveals that these increases in phorbol diester responses are probably attributable to the proportional rise in metamyelocytes, band, and segmented neutrophils. A variety of phorbol diesters increased superoxide anion generation in HL-60 cells differentiated into granulocyte-like cells by 6-day incubation with Me2SO. The structure-activity relationship of these phorbol diester derivatives for protein phosphorylation was strongly correlated to their ability to increase superoxide anion generation. Thus, we propose that phorbol diester-induced phosphorylation of pp212, pp134, and pp76, but not pp29 may play a role in mediating the functional response of phorbol diester-induced superoxide anion generation in HL-60 cells differentiated into mature granulocyte-like cells.  相似文献   

12.
Exposure to low temperature causes platelets to change shape in a manner similar to the shape change that precedes secretagogue-induced serotonin release. Previous studies have shown that two proteins, of approximately 20,000 and approximately 40,000 Mr, become phosphorylated before secretion. We have investigated whether low temperature can induce phosphorylation of these proteins and/or serotonin secretion. The data indicate that low-temperature-induced shape change has no requirement for extracellular calcium, whereas phosphorylation of the two proteins and subsequent serotonin release both have strong calcium requirements. Because cold treatment is thought to influence platelet shape through an effect on microtubules, the events in the shape change- release sequence would seem to be ordered as follows: microtubule disassembly leads to shape change leads to protein phosphorylation leads to secretion.  相似文献   

13.
14.
Quercetin, a C-kinase antagonist, inhibits neutrophil degranulation and superoxide production induced by f-met-leu-phe, solid phase IgG, zymosan treated serum and a phorbol ester (PMA). Quercetin is more effective in inhibiting degranulation (IC50 = 20 uM) than superoxide production (IC50 = 80 microM). Neutrophil activation by PMA is accompanied by the phosphorylation of neutrophil proteins of 205, 170, 130, 91, 77, 67, 56, 47, 39, 34, 27, and 20 kilodaltons; quercetin also inhibits the phosphorylation of these proteins. Dose-response studies indicated that phosphorylation of the 67 kilodalton protein was particularly sensitive to inhibition by quercetin at concentrations that also inhibit neutrophil degranulation and superoxide production. These results suggest that phosphorylation of the 67 kilodalton protein may be an important intracellular reaction associated with neutrophil activation.  相似文献   

15.
通过体外培养脂肪细胞,研究C-反应蛋白(CRP)对大鼠脂肪细胞脂联素蛋白分泌及mRNA基因表达的影响。取大鼠附睾脂肪垫培养脂肪细胞。用0、10、50ug/mL的CRP刺激脂肪细胞6h,提取细胞RNA,用实时荧光定量RT-PCR技术检测脂联素mRNA表达的变化;收集细胞培养液,运用Western blot技术检测脂联素蛋白分泌的变化。结果显示0、10、50ug/mL的CRP对大鼠脂肪细胞脂联素mRNA表达的影响无差异(P〉0.05)。50、10ug/mL的CRP均可减少大鼠脂肪细胞培养液中脂联素蛋白的分泌量(P〈0.05)。CRP可呈剂量依赖性的降低脂肪细胞脂联素蛋白分泌的水平。而各组CRP未能影响脂肪细胞脂联素mRNA的表达。CRP对脂肪细胞脂联素基因表达和蛋白分泌的研究可以揭示转录后的控制决定了CRP对脂联素的影响。  相似文献   

16.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

17.
Nitric oxide/cGMP/cGMP kinase I (cGKI) signaling causes relaxation of intestinal smooth muscle. In the gastrointestinal tract substrates of cGKI have not been identified yet. In the present study a protein interacting with cGKIbeta has been isolated from a rat intestinal cDNA library using the yeast two-hybrid system. The protein was identified as cysteine-rich protein 2 (CRP2), recently cloned from rat brain (Okano, I., Yamamoto, T., Kaji, A., Kimura, T., Mizuno, K., and Nakamura, T. (1993) FEBS Lett. 333, 51-55). Recombinant CRP2 is specifically phosphorylated by cGKs but not by cAMP kinase in vitro. Co-transfection of CRP2 and cGKIbeta into COS cells confirmed the phosphorylation of CRP2 in vivo. Cyclic GMP kinase I phosphorylated CRP2 at Ser-104, because the mutation to Ala completely prevented the in vivo phosphorylation. Immunohistochemical analysis using confocal laser scan microscopy showed a co-localization of CRP2 and cGKI in the inner part of the circular muscle layer, in the muscularis mucosae, and in specific neurons of the myenteric and submucosal plexus. The co-localization together with the specific phosphorylation of CRP2 by cGKI in vitro and in vivo suggests that CRP2 is a novel substrate of cGKI in neurons and smooth muscle of the small intestine.  相似文献   

18.
Among the different platelet responses, secretion requires the greatest amount of metabolic energy. The velocities of dense, alpha- and acid hydrolase granule secretion vary in parallel with the increase in energy consumption seen in thrombin-stimulated cells. This covariance is preceded by a phase in which energy consumption is increased without the extracellular appearance of secretion markers. By treating the platelets with thrombin and hirudin we have stimulated the platelets for short intervals and succeeded in separating shape change, single platelet disappearance and secretion to a great extent. In this report we show that the early increase in energy consumption reflects the energy requirement of aggregation but not of shape change. The cost of 100% of single platelet disappearance is 2.8 mumol of ATPeq. X (10(11) platelets)-1. Concurrent analysis of phosphorylation of Mr 20 000 and 47 000 proteins and of 32P-labelled phosphatidylinositol metabolites led to the following observations. Firstly, shape change is neither accompanied by an increase in protein phosphorylation nor by changes in the steady state levels of 32P-labelled phosphatidylinositol metabolites. Secondly, when aggregation occurs both proteins are phosphorylated, but the phosphatidylinositol metabolites do not change. Thirdly, when secretion follows, more phosphorylation of the Mr 47 000 protein occurs and initially only phosphatidic acid accumulates. At a later stage of the secretion responses, more protein phosphorylation and phosphatidic acid accumulation become evident, and are now accompanied by alterations in the steady state levels of 32P-labelled (poly)phosphoinositides. Hence, the early increase in energy consumption coincides with protein phosphorylation and, at a later stage, with alterations in (poly)phosphoinositides metabolites. This demonstrates that metabolic energy is directly involved in stimulus-response coupling in aggregating platelets.  相似文献   

19.
The effects of staurosporine and K-252a, potent inhibitors of protein kinases, and 12-O-tetradecanoylphorbol-13-acetate (TPA) on catecholamine secretion and protein phosphorylation in digitonin-permeabilized bovine adrenal medullary cells were investigated. Staurosporine and K-252a (0.01-10 microM) did not cause large changes in catecholamine secretion evoked by Ca2+ in digitonin-permeabilized cells whereas these compounds strongly prevented TPA-induced enhancement of catecholamine secretion in a concentration-dependent manner. Incubation of digitonin-permeabilized cells with [gamma-32P]ATP resulted in 32Pi incorporation into a large number of proteins, detected as several major bands and darkened background in autoradiograms. Ca2+ and TPA increased phosphorylation of these proteins. Staurosporine and K-252a markedly inhibited Ca(2+)-induced and TPA-induced increases in protein phosphorylation as well as basal (0 Ca2+) protein phosphorylation in digitonin-permeabilized cells. Long term treatment (24 h) of adrenal medullary cells with 1 microM TPA markedly decreased total cellular protein kinase C activity to about 5.3% of control. Pretreatment of the cells with 1 microM TPA strongly inhibited the TPA-induced enhancement of catecholamine secretion whereas it did not cause large changes in total cellular catecholamine amounts, Ca(2+)-induced catecholamine secretion, and cAMP-induced enhancement of catecholamine secretion from digitonin-permeabilized cells. From these results we conclude that protein kinase C plays a modulatory role in catecholamine secretion rather than being essential for initiating catecholamine secretion.  相似文献   

20.
We examined the effects of newly exploited amiloride analogs on protein phosphorylation and serotonin secretion in human platelets. 5-(N-methyl-N-isobutyl) amiloride (IBA) and, to a lesser extent, 5-(N-methyl-N-isopropyl) amiloride (IPA), highly specific inhibitors of Na+/H+-pump, induced the phosphorylation of 47K-dalton protein and myosin light chain (20K). The phosphorylation was inhibited by apyrase. On the other hand, 3', 4'-dichlorobenzamil (DCB) and 2', 4'-dimethylbenzamil (DMB), highly specific inhibitors of Na+/Ca2+-pump, and to a lesser extent amiloride analogs induced serotonin secretion. Apparently there was dissociation between the phosphorylation and the serotonin release induced by the analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号