首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Salix alba L. and Populus×euroamericana cv. Robusta cuttings were grown in 10 μM Cd(NO3)2 (direct treatment) or in Knop solution and afterwards in Cd(NO3)2 (indirect treatment). Cd impact on rooting of directly treated plants and its impact on normally formed roots and shoots of indirectly treated plants were studied. The cumulative length, number and biomass of willow roots, pigment and starch contents, leaf net photosynthetic rate and dry mass/leaf area ratio of willow leaves were positively influenced by indirect treatment. However, indirectly treated poplars were more sensitive to Cd than directly treated ones. Indirect treatment lowered root Cd uptake in willow, Cd accumulation in cuttings of both species and Cd accumulation in poplar shoots. Cd-caused structural changes were similar in both species and in both treatments. Root apices, rhizodermis and cortex were the most seriously damaged root parts. In directly treated willow, the structure of central cylinder (0.5 – 1 cm from apex) remained unchanged in contrast to indirectly treated plants. Formation of cambium close to the apex indicated shortening of root elongation zone of indirectly treated plants. Directly Cd-treated poplar roots exhibited unusual defence activity of root apical meristem and accumulation of darkly stained material around central cylinder. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

3.
We evaluated the phytoremediation potential of Salix spp. exposed to high cadmium (Cd) and zinc (Zn) concentrations to select feasible plant materials for restoration and revegetation of mining soil contaminated by heavy metals on the basis of their Cd and Zn accumulation, Cd-Zn interaction on bioaccumulation, and the changes of photosynthetic parameters. The Cd and Zn concentrations were in the order of root > leaf > stem, regardless of the species. In the combined Cd and Zn treatment, the leaf and stem Cd concentration in all species were higher relative to Cd-alone treatment. In contrast, the Zn concentration in plant tissues when exposed to the combined Cd + Zn treatment decreased relative to the Zn-alone treatment. The translocation factor (TF) of Cd and Zn from root to leaf was generally higher compared to TF from root to stem than those in the single treatment. The Cd + Zn treatments resulted in enhanced translocation of Cd from root to aboveground tissue (synergistic), while the same treatment suppressed the Zn translocation from root to leaf and stem (antagonistic). The reduction of photosynthetic parameters in Zn alone and Cd + Zn treatments was generally higher than that of Cd-alone treatment. Among the different species, S. caprea and P. alba×glandulosa have the lowest photosynthetic reduction relative to the control. Overall, S. caprea could be a potential candidate for phytoremediation of Cd- and Zn-contaminated sites.  相似文献   

4.
Cadmium accumulation and tolerance in Populus nigra and Salix alba   总被引:1,自引:0,他引:1  
Rooted cuttings of Populus nigra L. clone Poli and Salix alba L. clone SS5 were treated for three weeks with 50 μM CdSO4 in nutrient solution. The willow showed a far higher Cd tolerance, expressed as tolerance index (Ti), than the poplar in both roots and leaves. The root Cd content was higher in poplar than in willow, whereas in leaves the opposite was found. As a consequence, the translocation factor (Tf) revealed a greater ability of Cd transport in willow than in poplar. Cd treatment enhanced cysteine, γ-glutamylcysteine and reduced glutathione contents in roots of both species, whereas in leaves they were only enhanced in poplar. Furthermore, only poplar leaves showed an enhanced content of phytochelatins, whereas malic and citric acids rose in response to Cd only in the willow leaves. Cd treatment increased putrescine, spermidine and spermine contents in both roots and leaves of the willow, whereas in poplar only the putrescine content was enhanced in roots.  相似文献   

5.
Microbial communities in plant roots provide critical links between above‐ and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap‐plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.  相似文献   

6.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

7.
Salix species are widely used as vegetation filters because of their flourishing root system and fast growth rate. However, studies have yet to determine whether the root system functions in vegetable filters with mixed heavy metal (HM) pollution or whether initial cutting participates in the phytoextraction of HMs. This study aims to determine the function of the root system and initial cutting as vegetation filters in the absorption and accumulation of Cd and Cu. Thick (>1?cm in diameter) and fine (<1?cm in diameter) initial cuttings of Salix matsudana were planted in a nutrient solution with single and mixed (Cd?+?Cu) treatments. The roots of several initial cuttings were removed daily to eradicate rhizofiltration. Results revealed that the existence of the root system altered distribution and interaction of Cd and Cu in plant organs and enhanced tolerance and phytoextraction capacity of plants. The initial cuttings could also absorb and accumulate HMs in the early growth stages of willow without roots. Cu inhibited the plant absorption and accumulation of Cd and promoted Cd transport to shoots. Cd inhibited the Cu absorption of the root system. Our study provided essential data regarding woody species as vegetation filters of HM pollution.  相似文献   

8.
In recent decades, invasive willows and poplars (Salicaceae) have built dense floodplain forests along most of the rivers in Patagonia, Argentina. These invasion processes may affect Salix humboldtiana as the only native floodplain tree species in this region. It is assumed, that the property to reproduce vegetatively can play an important role in the establishment of invasive species in their new range. Thus, in order to contribute to a better understanding of willow and poplar invasions in riparian systems and to assess the potential impacts on S. humboldtiana the vegetative reproduction capacities of native and invasive Salicaceae were analysed. In a greenhouse experiment, we studied cutting survival and growth performance of the three most dominant invasive Salicaceae of the Patagonian Río Negro region (two Salix hybrids and Populus spec.), as well as S. humboldtiana, taking into account three different moisture and two different soil conditions. In a subsequent experiment, the shoot and root biomass of cuttings from the former experiment were removed and the bare cuttings were replanted to test their ability to re-sprout. The two invasive willow hybrids performed much better than S. humboldtiana and Populus spec. under all treatment combinations and tended to re-sprout more successfully after repeated biomass loss. Taking into account the ecology of vegetative and generative recruits of floodplain willows, the results indicate that the more vigorous vegetative reproduction capacity can be a crucial property for the success of invasive willow hybrids in Patagonia being a potential threat for S. humboldtiana.  相似文献   

9.
The objective of this study was to determine the effect of silicon (Si) and cadmium (Cd) on root and shoot growth and Cd uptake in two hydroponically cultivated Brassica species (B. juncea (L.) Czern. cv. Vitasso and B. napus L. cv. Atlantic). Both species are potentially usable for phytoextraction. Inhibitory effects of Cd on root elongation were diminished by the impact of Si. Primary roots elongation in the presence of Cd + Si compared with Cd was stronger and the number of lateral roots was lower in B. juncea than in B. napus. Cd content per plant was higher in B. napus roots and shoots compared with B. juncea. Suberin lamellae were formed closer to the root apex in Cd + Si than in Cd treated plants and this effect was stronger in B. napus than in B. juncea. Accelerated maturation of endodermis was associated with reduced Cd uptake. Cd decreased the content of chlorophylls and carotenoids in both species, but Si addition positively influenced the content of photosynthetic pigments which was higher in B. napus than in B. juncea. Si enhanced more substantially translocation of Cd into the shoot of B. napus than of B. juncea. Based on our results B. napus seems to be more suitable for Cd phytoextraction than B. juncea because these plants produce more biomass and accumulate higher amount of Cd. The protective effect of Si on Cd treated Brassica plants could be attributed to more extensive development of suberin lamellae in endodermis.  相似文献   

10.
The effect of excessive Cd on the growth and metal uptake by leafy vegetables Brassica chinensis L. (cv. Wuyueman) and Brassica pekinensis (Lour.) Rupr. (cv. Qingyan 87-114) were studied in hydroponic solution culture. The Cd concentration higher than 10 μM significantly decreased the root elongation and leaf chlorophyll contents of both plant species. The shoots of B. pekinensis had significantly higher concentrations of total and water-soluble Cd than B. chinensis. The roots of both species accumulated more Cd than the shoots in all the Cd treatments. Most of the Cd in the roots was found in the cell walls. The shoot/root ratio of Cd concentrations in B. pekinensis was always greater than that in B. chinensis. But, the concentration and proportion of Cd in the cell walls in B. chinensis were higher than that in B. pekinensis. Cadmium treatments also increased the concentrations of total non-protein thiols (NPT) in the shoots of the both species. A significant correlation was found between the concentrations of soluble Cd and NPT in plant shoots.  相似文献   

11.
We exposed cuttings of two sympatric species of Sect. Tacamahaca Spach, Populus cathayana Rehder and Populus przewalskii Maximowicz, to two watering regimes in a greenhouse. In the semi-controlled environmental study, two watering treatments which were watered to 100 and 25% of field capacity were used, respectively. The effects of water deficit on early growth, biomass allocation and water use efficiency (WUE) were investigated. We found that there were significant interspecific differences in early growth, dry matter allocation and water use efficiency between two sympatric Populus species. Compared with P. cathayana, P. przewalskii showed higher shoot height, dry matter accumulation, number of leaves, total leaf area, fine root mass, fine root/total root ratio and water use efficiency under both well-watered and water-stressed treatments. On the other hand, P. przewalskii also showed higher root mass/foliage area ratio, root/shoot ratio and carbon isotope composition than P. cathayana under water-stressed treatment. The results suggested that there were different water-use strategies between two sympatric Populus species, P. przewalskii with higher drought tolerance may employ a conservative water-use strategy, whereas P. cathayana with lower drought tolerance may employ a prodigal water-use strategy. The findings confirm the existence of interspecific genetic differences in early growth, dry matter allocation and water use efficiency as affected by water stress, these variations in drought responses may be used as criteria for species selection and tree improvement.  相似文献   

12.
汪庆兵  张建锋  陈光才  孙慧  吴灏  张颖  杨泉泉  王丽 《生态学报》2015,35(16):5364-5373
采用水培法,研究了旱柳苗在外源添加不同氮水平(贫氮、中氮、富氮、过氮)的铵态氮(NH+4-N)和硝态氮(NO-3-N)的生长、氮吸收、分配和生理响应。结果表明:一定范围氮浓度的增加能够促进旱柳苗的生长,但过量氮会抑制其生长,且NH+4-N的抑制作用大于NO-3-N;两种氮处理下,旱柳表现出对NH+4-N的吸收偏好,在同一氮水平时,旱柳各部位氮原子百分含量Atom%15N(AT%)、15N吸收量和来自氮源的N%(Ndff%)均为NH+4-N处理大于NO-3-N处理,且随着氮浓度的增加,差异增大,且在旱柳各部位的分布为根﹥茎﹥叶;2种氮素过量和不足均会对旱柳根和叶生理指标产生不同的影响,其中在过氮水平时,NH+4-N和NO-3-N处理下根系活力比对照减少了50.61%和增加了19.53%;在过氮水平时,NH+4-N处理柳树苗根总长、根表面积、根平均直径、根体积和侧根数分别对照下降了30.92%、29.48%、19.44%、27.01%和36.41%,NO-3-N处理柳树苗相应的根系形态指标分别对对照下降了1.66%、5.65%、1.49%、5.06%和25.72%。可见,高浓度NH+4-N对旱柳苗的胁迫影响大于NO-3-N,在应用于水体氮污染修复时可通过改变水体无机氮的比例,削弱其对旱柳的影响,从而提高旱柳对水体氮污染的修复效果。  相似文献   

13.
镉与萘复合胁迫对红树植物白骨壤幼苗萌芽及生长的影响   总被引:1,自引:0,他引:1  
为探讨白骨壤(Avicennia marina)幼苗对重金属镉(Cd)和多环芳烃萘(Nap)复合胁迫的响应,采用砂基栽培,对其幼苗的萌芽和生长进行了研究。结果表明,Cd、Nap复合胁迫对白骨壤萌芽的抑制效应较单一胁迫明显,胁迫前期幼苗成活率提高,胁迫后期则降低。胁迫栽培45 d,10 mg L~(–1)的Nap在叶形态、茎高及各器官生物量上能够减轻Cd胁迫的影响,但增强对根长的抑制作用,10 mg L~(–1) Nap-25 mg L~(–1) Cd处理的叶面积、叶长、叶宽、茎高及全株生物量分别比25 mg L~(–1) Cd处理的提高9.6%、7.9%、7.4%、5.1%和20.2%,但根长则比150 mg L~(–1) Cd处理的下降11.1%。至胁迫栽培90 d,各处理间幼苗器官及全株生物量无显著影响,复合胁迫对叶形态、茎高和根长等的抑制作用要强于单一Cd胁迫。因此,随着复合胁迫时间的延长,Cd和Nap对白骨壤幼苗的生长由拮抗效应转变为协同效应。  相似文献   

14.
A fast growing high density Populus plantation located in central Italy was exposed to elevated carbon dioxide for a period of three years. An elevated CO2 treatment (550 ppm), of 200 ppm over ambient (350 ppm) was provided using a FACE technique. Standing root biomass, fine root turnover and mycorrhizal colonization of the following Populus species was examined: Populus alba L., Populus nigra L., Populus x euramericana Dode (Guinier). Elevated CO2 increased belowground allocation of biomass in all three species examined, standing root biomass increased by 47–76% as a result of FACE treatment. Similarly, fine root biomass present in the soil increased by 35–84%. The FACE treatment resulted in 55% faster fine root turnover in P. alba and a 27% increase in turnover of roots of P. nigra and P. x euramericana. P. alba and P. nigra invested more root biomass into deeper soil horizon under elevated CO2. Response of the mycorrhizal community to elevated CO2 was more varied, the rate of infection increased only in P. alba for both ectomycorrhizal (EM) and arbuscular mycorrhizas (AM). The roots of P. nigra showed greater infection only by AM and the colonization of the root system of P. x euramericana was not affected by FACE treatment. The results suggest that elevated atmospheric CO2 conditions induce greater belowground biomass investment, which could lead to accumulation of assimilated C in the soil profile. This may have implications for C sequestration and must be taken into account when considering long‐term C storage in the soil.  相似文献   

15.
Influence of soil gas contamination on tree root growth   总被引:1,自引:0,他引:1  
Summary Rooted-cuttings and saplings of green ash (Fraxinus lanceolata) and hybrid poplar (Populus spp) were planted on a former municipal refuse landfill and on a nearby nonlandfill control plot. The root systems of four trees of each species and size were excavated on the landfill plot-two growing in an area where the concentrations of anaerobic landfill gases were relatively high and two in a relatively low-gas area. Two trees of each species and size were also excavated on the control. The root systems of both species were significantly shallower on the landfill plot than on the control. Green ash appeared to avoid the adverse gas environment of the deeper soil layers on the landfill by producing adventitious roots. Hybrid poplar became adapted in a different manner, by redirecting root growth from the deepter soil layers to the soil surface.  相似文献   

16.
秋华柳和枫杨幼苗对镉的积累和耐受性   总被引:5,自引:0,他引:5  
以秋华柳和枫杨当年实生幼苗为研究对象,采用向土壤添加外源镉(CdCl2 · 2.5H2O)的形式设置了0(对照组)、10 、20 、50、100 mg/kg 5个处理,研究了镉胁迫下秋华柳和枫杨幼苗的生长、生物量变化和根茎叶镉含量,并评价了两树种的耐性指数(Ti)、转移系数(Tf)和生物富集系数(BCF)。结果表明:(1)在镉含量为10 mg/kg时,秋华柳和枫杨幼苗基于生长和生物量参数的耐性指数(Ti)分别为91.72和91.62,与对照组相比无显著变化,其余各组(20、50、100 mg/kg)则显著低于对照植株(P<0.05);(2) 土壤镉浓度小于20mg/kg时,秋华柳植株茎、叶镉积累量分别高达61.73 mg/kg、163.04 mg/kg,根镉积累量为91.05 mg/kg;枫杨植株茎、叶镉积累量最高分别为7.9 mg/kg、5.25 mg/kg,仅为秋华柳茎、叶的12.8%和3.2%,根镉积累量高达190.68 mg/kg;(3) 除对照外,秋华柳幼苗各部分镉含量为叶>根>茎,转移系数(Tf)介于0.789-1.513之间,枫杨幼苗各部分镉含量为根>茎>叶,转移系数(Tf)介于0.037-0.044之间,远远小于秋华柳Tf;(4)秋华柳和枫杨幼苗在土壤镉浓度为10 mg/kg时具有很高的生长适应性和耐性,秋华柳根吸收的镉向地上部分转移能力、地上部分积累镉的能力都远远大于枫杨,生物富集系数(BCF)进一步证实了这一特性。研究证明,秋华柳植株具有很高的镉耐性、镉转移能力及地上部分积累镉的能力,适合于镉污染严重区域的植物修复。  相似文献   

17.
The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.  相似文献   

18.
We have compared the effect of toxic Cu and Cd concentrations on growth, metal accumulation, and chloroplast ultrastructure of willow (Salix purpurea L.) and reed [Phragmites australis (Cav.) Trin. ex Steud.]. After a 10-day treatment, both species have tolerated to some extent the lowest concentration of both metals; however, plant growth was strongly reduced at the highest Cu and Cd concentrations. These plants could be described as Cu-tolerant at the lowest concentration tested, showing a higher tolerance index in reed than in willow; in contrast, willow exhibited higher tolerance against Cd. Both plants appeared to be moderate root accumulators of Cu and Cd. Ultrastructural studies revealed special features that can provide some protection against heavy metals stress, such as ferritin aggregates in the stroma. In addition, Cu and Cd induced distortion of thylakoids, reduction of grana stacks, as well as an increased number and size of plastoglobuli and peripheral vesicles.  相似文献   

19.
Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat seedlings were investigated. Gas exchange was monitored at 3, 9, 24 days after treatment (DAT). Growth parameters, chlorophyll content, leaf chlorophyll fluorescence, and Cd concentration in shoot and root were measured at 24 DAT. Seedling growth, gas exchange, chlorophyll content, chlorophyll fluorescence parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected Cd concentrations in shoots and roots could be explained by the regression model Y = K/(1 + exp(a + bX)). Jing 411 was found to be Cd tolerant considering parameters of chlorophyll content, photosynthesis and chlorophyll fluorescence in which less Cd translocation was from roots into shoots. The high Cd concentrations were in shoots and roots in Yangmai 10 which has been found to be a relative Cd tolerant cultivar in terms of most growth parameters.  相似文献   

20.
Plant responses to herbivory include tolerance (i.e. compensatory growth) and defense. Several factors influence the tolerance of a plant following herbivory, including plant genetic identity, site nutrient availability, and previous and/or concurrent herbivory. We studied the effects of these factors on the compensatory response of Salix planifolia ssp. planifolia, a shrub species common in the boreal and subarctic regions of North America. We cloned several genets of S. planifolia and submitted them to simulated root and/or leaf herbivory while varying the nutrient availability. Simulated leaf herbivory was more detrimental to the plant than simulated root herbivory, reducing both above- and below-ground tissue production. Leaf demography was unaffected by either simulated herbivory treatment. There was some compensatory growth following simulated leaf and root herbivory, but only the root compartment responded to increased nutrient availability. Simulated leaf herbivory increased leaf transpiration and reduced stomatal resistance, suggesting increased carbon fixation. The unexpected finding of the experiment was the absence of interactions among factors (genotype, nutrient availability and type of tissue damage) on the compensatory response of S. planifolia. These factors thus have additive effects on the species' compensatory ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号