首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
BACKGROUND AND AIMS: Pollen characters have been widely used in defining evolutionary trends in orchids. In recent years, information on pollination biology and phylogenetic patterns within Orchidinae has become available. Hence, the aim of the presented work is to re-evaluate exine micromorphology of Orchidinae in light of recent phylogenetic studies and to test whether pollen micromorphology strictly depends on phylogenetic relationships among species or whether it is influenced by the marked differences in pollination ecology also reported among closely related species. METHODS: Pollen sculpturing of 45 species of Orchidinae and related taxa was investigated using scanning electron microscopy. To cover potential intraspecific variation, several accessions of the same species were examined. KEY RESULTS: Orchidinae show remarkable variation in exine sculpturing, with a different level of variation within species groups. In some genera, such as Serapias (rugulate) and Ophrys (psilate to verrucate), intrageneric uniformity corresponds well to a common pollination strategy and close relationships among species. However, little exine variability (psilate-scabrate and scabrate-rugulate) was also found in the genus Anacamptis in spite of striking differences in floral architecture and pollination strategies. A larger variety of exine conditions was found in genera Dactylorhiza (psilate, psilate-scabrate and reticulate) and Orchis s.s. (psilate, reticulate, perforate-rugulate and baculate) where no unequivocal correspondence can be found to either phylogenetic patterns or pollination strategies. CONCLUSIONS: Changes in pollen characteristics do not consistently reflect shifts in pollination strategy. A unique trend of exine evolution within Orchidinae is difficult to trace. However, the clades comprising Anacamptis, Neotinea, Ophrys and Serapias show psilate to rugulate or scabrate pollen, while that of the clade comprising Chamorchis, Dactylorhiza, Gymnadenia, Orchis s.s., Platanthera, Pseudorchis and Traunsteinera ranges from psilate to reticulate. Comparison of the data with exine micromorphology from members of the tribe Orchidieae and related tribes suggests a possible general trend from reticulate to psilate.  相似文献   

2.
Pollen grains of tribe Sanguisorbeae (Rosaceae, Rosoideae) were examined using scanning electron microscopy to identify useful characters, test taxonomic and phylogenetic hypotheses among genera, and elucidate pollen character evolution based on a molecular phylogeny. Aperture number, aperture structure, pollen shape, and exine sculpturing were variable within Sanguisorbeae and were used to delineate six pollen types. Four types (I–IV) were observed only in subtribe Sanguisorbinae whereas two types (V–VI) were found only in subtribe Agrimoniinae. Pollen grains of tribe Sanguisorbeae were generally subprolate to spheroidal in shape, had operculate or pontoperculate apertures, and had three apertures, except for Margyricarpus (tetraperturate). Exine sculpturing within Sanguisorbinae represented variations of striate, verrucate, rugulate, and perforate patterns often with microechinate sculpturing. Striate exine patterns and prolate shapes characterized the pollen of the Agrimoniinae, except for the microechinate-verrucate pattern and subprolate to spheroidal shapes observed in Hagenia. Pollen characters are most useful at the generic level and, when mapped on to a molecular phylogenetic tree of the tribe, are concordant with a monophyletic Agrimoniinae and a clade comprising Margyricarpus + Acaena + Polylepis + Cliffortia + Sanguisorba in the Sanguisorbinae. Outgroup comparison indicated that operculate colpi, three apertures, and polymorphism for striate or microverrucate exines represented primitive states for tribe Sanguisorbeae.  相似文献   

3.
We have described a new genus Taihangia, collected from, the south part of Taihang Mountain in northern China. At the same time, comparative studies on Taihangia with its related genera have been made in various fields including external morphology, anatomy of carpels, chromosome and pollen morphology by light, scanning and transmission electron microscope. In addition, isoperoxidases of two varietier were analysed by means of polya-crylamide gel slab electrophoresis. The preliminary results are as follows: Morphology: The genus Taihangia is perennial and has simple leaves, occasionally with 1—2 very small reduced lobes on the upper part of petiole; flowers white, andromonoecious and androdioecious, terminal, single or rarely 2 on a leafless scape; calyx and cpicalyx with 5 segments; petals 5; stamens numerous; pistils numerous, with pubescent styles, spirally inserted on the receptacle in bisexual flowers, but with less number of abortive and glabrous pistils in male flowers. In comparison with the related genera such as Dryas, Geum, Coluria and Waldsteinia, the new genus has unisexual flowers and always herbaceous habit indicating its advanced feature but the genus has a primitive style with thin and short hairs as compared with the genus Dryas which has long, pinnately haired styles, a character greatly facilitamg anemo-choric dissemination. The styles of Taihangia are slender and differ from those of the ge-nus Geum which are articulate, with a persistent hooked rostrum, thus adapting to epizo-ochoric dissemination to a higher degree. The anatomy of carpels shows the baral position of ovules in the genus Taihangia like those in other related genera such as Dryas, Geum, Acomastylis, Coluria and Waldsteinia. This suggests that the new genus and its related ones are in a common evolutionary line as compared with the other tribes which have a pendulous ovule and represent a separate evolutionary line in Rosaceae. Dorsal and ventral bundles in carpels through sections are free at the base. Neither fusion, nor reduction of dorsals and vertrals. are observed. This shows that the genus Taihangia is rather primitive. Somatic chromosome: All the living plants, collected from both Honan and Hopei Provinces were examined. The results show that in these plants the chromosome number is 2n= 14, and thus the basic number of chromosome is x=7. Such a diploid genus is first found in both anemochoric and epizoochoric genera. Therefore, in this respect Taihangia is primitive as compared with herbaceous polyploid genus Geum and related ones. Pollen: The stereostructure shown by scanning electron microscope reveals that the pollen grains of the genus Taihangia are ellipsoid and 3-colporate. There are two types of exine sculpture. One is rather shortly striate and it seems rugulate over the pollen surface; the other is long-striate. The genus Dryas differs in having only short and thick striae over the surface. The genus is similar to the genera Geum, Coluria and Waldsteinia in colpustype, but differs from them in that they all have long, parallel striae which are distributed along the meridional line. In addition, under transmission electron microscope, the exine in the Taihangia and related genera Acomastylis, Geum, Coluria, Waldsteinia and Dryas has been shown to be typically differentiated into two distinct layers, nexine and sexine. The nexine, weakly statined, appears to consist of endoxine with no foot-layer, in which the columellae are fused, and which is thicker beneath the apertures. The sexine is 2-layered, consisting of columellae and tectum. Three patterns of tectum can be distinguished in the tribe Dryadeae: the first, in the genera Taihangia, Acomastylis, Geum, Coluria and Waldsteinia, is tectate-imperforate, with the sculpturing elements both acute and obtuse at the top and broad at the base; the second, in the genus Dryas, is semitectate, with the sculpturing elements shown in ultrathin sections rod-like and broader at the top than at the base or as broad at the top as at the base, and the third, tectate-perforate, with the sculpturing elements different in size. From the above results, the herbaceous groups and woody ones have palynologically evolved in two distinct directions, and the genus Taihangia is related to other herbaceous genera such as Acomastylis, Geum, Coluria and Waldsteinia, as shown in the electron microphotographs of ultrathin sections. The genus Taihangia, however, is different from related herbaceous genera in that the pollen of Taihangia is dimorphic, i.e. in addition to the above pattern of pollen another one of the exine in Taihangia is rugulate, with the sculpturing elements shown in the ultrathin sections being obtuse or emarginate and nearly as broad at the top as at the base. The interesting results obtained from the comparative analysis of morphology, anatomy of carpels, chromosome countings, microscopic and submicrosocopic structures of pollen may enable us to evaluate the systematic position of Taihangia and to throw a new light on evolution of the tribe Dryadeae. It is well known that the modes of dissemination of rosaceous fruits play an important role in the expansion and evolution of the family. The follicle is the most primitive and the plants with follicles, like the Spiraeoideae, are mostly woody and mesic, while the achene, drupe and pyrenarium are derived. In Rosoideae having a achene is a common feature. Particularly in the tribe Dryadeae, which is distinguished from the other related tribes by having orthotropous ovules, the methods of dissemination of fruits have developed in three distinct specialized directions: anemochory with long, plumose styles (e.g. Dryas), formicochory or dispersed by ants or other insects, with the deciduous styles (e.g. Waldsteinia and Collria),and epizoochory with the upper deciduous stigmatic part and the lower persistent hooked rostrum, an adhesive organ favouring epizoochory dissemination (e. g. Geum and related taxa). Taihangia is a genus endemic to mesophytic forest area of northern China. Due to its narrow range and specific habit as well as pubescent styles, neither perfectly adapted to anemochory nor to epizoochory, the genus Taihangia might be a direct progeny of the ancestry of anemochory. Maintaining the diploidy and having an ntermediate sculptural type of pollen, the new genus might probably represent a linkage between anemochory and zoochory (including epizoochory and dispersed by ants). Experimental evidence from isoperoxidases shows the stable zymograms of root and roostoks. The anodal isozyme of T. rupestris var. rupestris may be divided into 6 bands: A, B, C, D, E, F, and T. rupestris var. ciliata into 4 bands: A, B, C, G. The two varietiesof the species share 3 bands: A, B, C. However, D, E and F bands are characteristic of var. rupestris and G band is limited to var. ciliata. As far as the available materials are concerned, the analysis of isoperoxidases supports the subdivision of the species into two varieties.  相似文献   

4.
茨藻目植物柱头特征与传粉系统的演化   总被引:8,自引:0,他引:8  
茨藻目包含有风媒、水表水媒和水下传粉的多种传粉方式。在前人工作的基础上,补充了4科9 种植物的柱头特征和传粉机制的观察。该目花粉和柱头特征可分为两类,传粉系统表现出两种不同的柱头捕获花粉的机制。花粉为球形的种与其宽大的柱头相配;而那些花粉演化为丝状或花粉在水中具先期萌发能力的种,其花粉易被其丝状的柱头所捕获。此外,还推测了导致这个类群传粉系统分化的可能原因。  相似文献   

5.
Diverse ways of pollination, including aerial, epihydrophilous and hypohydrophilous ones occur in the Najadales. Although the knowledge of pollination biology in this order has been largely accumulated in recent years, most researchers ignored the role of stigmas in the pollination process. Based on the previous works, we supplemented observations on stigmatic characters and pollination mechanism in nine species from four families. The flowers of Aponogeton lakhonensis ( Aponogetonaceae ), Triglochin palustre ( Juncaginaceae), Potamogeton crispus, P. distinctus, P. gramineus, P. pectinatus, P. perfoliatus, P. pusillus (Potamogetonaceae), are all found to open above or on water surface. Stigmas in these species have a large surface area. Correspondingly, the pollen grains are all found to be globular. Of the eight species, except for P. pectinatus and P. pusillus, the remaining six obviously expose their stigmas out of the perianth. Another species , Najas marina (Najadaceae), has filiform stigmas and ellipsoidal pollen grains which can germinate in water before being transferred onto stigmas in natural conditions. Pollination takes place in this species strictly under water. The characters of pollen and stigmas could be divided into two types, and the pollination system is of two kinds of mechanisms of stigmas capturing pollen in the Najadales. The species with globular pollen grains have wide, large stigmas while those producing filiform or precocious pollen grains, which are likely to be captured by stigmas during the pollen dispersal by water currents, normally have filiform stigmas. It is inferred that various water stresses might have resulted in the diversification of pollinationsystem in the Najadales.  相似文献   

6.
In most plant species with abiotic pollination systems, pollen is dispersed in three dimensions. Theoretical considerations suggest, however, that there are significant advantages for two-dimensional pollination systems over three-dimensional systems, especially if pollen is dispersed in conveyances or aggregations of large diameter. We report that two-dimensional pollination systems occur in the genera Halodule, Halophila, Lepilaena, and Ruppia, where pollen grains are not transported through the water singly, but in rafts or search vehicles. These genera possess unusual pollen morphologies which facilitate assemblage of pollen grains into search vehicles. These floating search vehicles have large diameters, thus greatly increasing probability of encountering a stigma. The grains have a hydrophobic surface that appears to mediate adhesion by an external coating of proteins and carbohydrates. Similar adaptations to two-dimensional pollination are found in the target organs, the stigmas. The long filamentous stigmas of the marine genera float, as do the indusiate stigmas of the freshwater genera, creating small depressions in the water surface. Pollination occurs through the collision of a moving search vehicle with a floating stigma. The existence of similar pollen search vehicles, stigma morphologies, and flowering phenologies in these unrelated hydrophilous genera evidences convergent evolution towards efficient search strategies in surface-pollinated aquatic plants.  相似文献   

7.
In angiosperm pollen the reticulate-perforate exine sculpturing is associated with sporophytic self-incompatibility (S.S.I.) and imperforate and microperforate exine sculpturing is associated with gametophytic self-incompatibility. The earliest unequivocal angiosperm pollen conforms to exine morphology of pollen from plants with S.S.I. The orgin of S.S.I. is hypothesized to have coincided with the appearance of what is now the earliest recognizable angiosperm pollen. Other angiosperm characteristics correlated with S.I., functional stigmatic areas, large showy flowers (or aggregated inflorescences), and passive seed dispersal, provide some insight into the biological aspects of the earliest angiosperms.  相似文献   

8.
The exine structure has been studied in Campanulaceae s. lat. The results are combined with those in previous studies of shape, sculpturing and aperture conditions. Fifteen further species have been studied by SEM. Two main groups of pollen are found: (1) porate pollen with spinules and ridges/protrusions or a low relief reticulum, combined with an ektexine varying from simple to complex and a lamellated endexine; (2) 3–colpate/colporate pollen with a high relief reticulate/striate surface sculpturing, in general a homogeneous ektexine and an endexine lacking lamellae. The first group corresponds to Campanulaceae s. str., the second to Lobeliaceae s. str. Some genera like Cyananthus, Codonopsis and Parishella have unique characters which make them difficult to place in any of the two main groups.  相似文献   

9.
Flowers of Weigela middendorffiana change the color from yellow to red. The previous study revealed that red-phase flowers no longer have sexual function and nectar, and bumblebees selectively visit yellow-phase flowers. The present study examined how retaining color-changed flowers can regulate the foraging behavior of bumblebees and pollen transport among flowers within (geitonogamous pollination) and between (outcrossing pollination) plants and how the behavior is influenced by display size (i.e., number of functional flowers) and visitation frequency. The visitation frequencies of bumblebees to plants and successive flower probes within plants were observed in the field using plants whose flower number and composition of the two color-phase flowers had been manipulated. To evaluate pollination efficiency over multiple pollinator visits, a pollen transport model was constructed based on the observed bumblebee behavior. In the simulation, three flowering patterns associated with display size and existence of color-changed flowers were postulated as follows: Type 1, large display (100 functional flowers) and no retention of color-changed flowers; Type 2, small display (50 functional flowers) and retention of color-changed flowers (50 old flowers), and; Type 3, large display (100 functional flowers) and retention of color-changed flowers (100 old flowers). Color-changed flowers did not contribute to increasing bumblebee attraction at a distance but reduced the number of successive flower probes within plants. Comparisons of pollen transfer between Types 1 and 3 revealed that the retention of color-changed flowers did not influence the total amount of pollen exported when pollinator visits were abundant (>100 visits) but decreased geitonogamous pollination. Comparisons between Types 2 and 3 revealed that the discouragement effect of floral color change on successive probes accelerated in plants with a large display size. Overall, the floral color change strategy contributed to reduce geitonogamous pollination, but its effectiveness was highly sensitive to display size and pollinator frequency.  相似文献   

10.
Relative pollen and ovule production in the genera of the legume tribeTrifolieae is explored particularly as to howMedicago with its explosive pollination mechanism compares with its allies.Medicago produces much larger, although much fewer pollen per ovule than the other five genera in the tribe; this is interpreted as a consequence of its highly specialized, irreversible pollination mechanism, which allows only one effective exchange of pollen with pollinators.Melilotus andTrifolium produce a comparatively large quantity of pollen; this can be related to their floral characteristics requiring abundant pollen to achieve fertilization. InMedicago andTrigonella, annuals convert a higher proportion of pollen grains and ovules into seeds than perennials.  相似文献   

11.
Observation of ovulate cones at the time of pollination in the southern coniferous family Podocarpaceae demonstrates a distinctive method of pollen capture, involving an extended pollination drop. Ovules in all genera of the family are orthotropous and single within the axil of each fertile bract. In Microstrobus and Phyllocladus ovules are erect (i.e., the micropyle directed away from the cone axis) and are not associated with an ovule-supporting structure (epimatium). Pollen in these two genera must land directly on the pollination drop in the way usual for gymnosperms, as observed in Phyllocladus. In all other genera, the ovule is inverted (i.e., the micropyle is directed toward the cone axis) and supported by a specialized ovule-supporting structure (epimatium). In Saxegothaea there is no pollination drop and gametes are delivered to the ovule by pollen tube growth. Pollination drops were observed in seven of the remaining genera. In these genera the drop extends over the adjacent bract surface or cone axis and can retain pollen that has arrived prior to drop secretion (“pollen scavenging”). The pollen floats upward into the micropylar cavity. The configuration of the cone in other genera in which a pollination drop has not yet been observed directly suggests that pollen scavenging is general within the family and may increase pollination efficiency by extending pollination in space and time. Increased pollination efficiency may relate to the reduction of ovule number in each cone, often to one in many genera, a derived condition. A biological perspective suggests that animal dispersal of large seeds may be the ultimate adaptive driving force that has generated the need for greater pollination efficiency.  相似文献   

12.
Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.  相似文献   

13.
Radiation of pollination systems in the Iridaceae of sub-Saharan Africa   总被引:1,自引:0,他引:1  
BACKGROUND: Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. SCOPE: Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen placement, in conjunction with changes in flower colour, scent and tube length. CONCLUSIONS: Diversity of pollination systems explains in part the huge species diversity of Iridaceae in sub-Saharan Africa, and permits species packing locally. Pollination shifts are, however, seen as playing a secondary role in speciation by promoting reproductive isolation in peripheral, ecologically distinct populations in areas of diverse topography, climate and soils. Pollination of Iridaceae in Eurasia and the New World, where the family is also well represented, is poorly studied but appears less diverse, although pollination by both pollen- and oil-collecting bees is frequent and bird pollination rare.  相似文献   

14.
Pollen morphology of 36 species representing 14 genera within the tribe Rhinantheae in the family Orobanchaceae was studied and illustrated with light microscopy (LM) and scanning electron microscopy (SEM). Five major pollen types were recognized on the basis of exine ornamentation. Within these major types, minor types (subtypes) were distinguished based on exine surface pattern, size, shape, amb form, colpi and colpus membrane. These types and subtypes are as follows: type I. retipilate: subtype Ia. regular retipilate: (1) pollen size < 27 μm, (2) pollen size > 27 μm, subtype Ib. irregular retipilate; type II. verrucate: subtype IIa. macro-verrucate, subtype IIb. verrucate, subtype IIc. sparse verrucate; type III. retirugulate; type IV. granulate; type V. micro-reticulate. A key to pollen morphology of genera studied within the Rhinantheae was made based on pollen morphology from our study and earlier work. Combining with other sources of information on the Rhinantheae, the systematic relationships of this tribe are discussed. Rhinantheae pollen displays considerable variation between genera and species, with taxonomically significant characters at genus and species level. Palynological characteristics provide evidence for interpreting the conflicting views concerning the “Pterygiella Complex”. The evolutionary trend in exine sculpture of Rhinantheae could be proposed, namely that retipilate sculpturing which is the most widespread type is more primitive than the other types (such as foveolate, granulate, regulate, reticulate, retirugulate and verrucate). The pollen data in present study and the view of Hong (1986), as well as the molecular data from Bennett and Mathews (2006) indicated that Asia and related regions were likely to the origin centre of the tribe Rhinantheae.  相似文献   

15.
桦木科植物花柱适应风媒传粉的特征   总被引:1,自引:0,他引:1  
植物体为适应自己的传粉系统, 表现出高度的适应特征。风媒花植物为适应风传播花粉, 要形成特殊的结构, 以扩大接受花粉粒的面积。利用扫描电镜观察了桦木科(Betulaceae)6属18种植物花柱的形态及花粉粒在花柱上的萌发过程, 探讨了桦木科植物花柱适应风媒传粉的特征。结果表明, 桦木科植物的二心皮(铁木、云南鹅耳枥稀为三心皮)雌蕊具柱状花柱, 柱头不发达, 花柱表皮细胞长条状, 纵向排列紧密。传粉时, 花柱表皮细胞能执行柱头的功能, 接受花粉粒, 为花粉粒萌发提供场所和萌发条件。桦木科植物花柱有2种类型: 一种是花柱表皮细胞能形成乳突, 花粉管经乳突细胞进入花柱; 另一种是花柱表皮细胞不形成乳突, 花粉管经过花柱表皮细胞或胞间隙进入花柱。无论花柱表皮细胞是否形成乳突, 乳突的形态、大小以及花粉管和乳突的结合方式等在族间、属间、属内种间存在差异。与基部被子植物相比, 桦木科植物的花柱呈现适应风媒传粉的进化特征。桦木科植物花柱表皮细胞形成的乳突与基部被子植物柱头乳突功能相同, 是桦木科植物风媒传粉的适应策略。  相似文献   

16.
BACKGROUND AND AIMS: The objective of this study is to examine the palynological diversity of Balsaminaceae (two genera/+/-1000 species), Tetrameristaceae (two genera/two species) and Pellicieraceae (one genus/one species). The diversity found will be used to infer the systematic value of pollen features within the balsaminoid clade. METHODS: Pollen morphology and ultrastructure of 29 species, representing all families of the balsaminoid clade except Marcgraviaceae, are investigated by means of light microscopy, scanning electron microscopy and transmission electron microscopy. KEY RESULTS: Balsaminaceae pollen is small to medium sized with three to four apertures, which can be either colpate or porate, and a sexine sculpturing varying from coarsely reticulate to almost microreticulate. Tetrameristaceae pollen is small sized, 3-colporate, with a heterobrochate reticulate sculpturing and granules present in the lumina. Pellicieraceae pollen is large sized, 3-colporate with long ectocolpi and a perforate sexine sculpturing with large verrucae. Furthermore, Pelliciera is characterized by the occurrence of aggregated orbicules, while orbicules are completely absent in both Balsaminaceae and Tetrameristaceae. Balsaminaceae pollen differs from the other balsaminoid families due to the occurrence of colpate or porate grains with an oblate to peroblate shape, a very thin foot layer and a lamellated endexine. CONCLUSIONS: From a pollen morphological point of view, Balsaminaceae are completely different from the other balsaminoid families. Therefore, no pollen morphological synapomorphies could be defined for the balsaminoid clade. However, various pollen features were observed that could indicate a possible relationship between Tetrameristaceae, Pellicieraceae and Marcgraviaceae. Despite the palynological similarities in the latter three families, it remains unclear to what extent they are related to each other.  相似文献   

17.
BACKGROUND AND AIMS: Distyly has been hypothesized to promote cross-pollination by reducing intrafloral and geitonogamous self-pollination, and enhancing intermorph pollination. Distylous plants typically display both reciprocal herkogamy and a heteromorphic incompatibility system, which allows mating only between morphs. Distyly and its pollination consequences were examined in two Pentanisia species with long-tubed flowers which are pollinated almost exclusively by butterflies. METHODS: Anther and stigma heights were measured to quantify reciprocal herkogamy. The type of incompatibility system was determined by observing pollen tubes and seed production following controlled hand pollination. Pollen loads on pollinators and stigmas were also examined to assess the efficiency of intermorph pollen flow. KEY RESULTS: Pentanisia prunelloides and P. angustifolia exhibit reciprocal herkogamy and a host of ancillary dimorphisms, including pollen colour, exine sculpturing, stigmatic papilla shape and floral-tube pubescence. Controlled hand-pollinations revealed the presence of a strong heteromorphic incompatibility system in both species. The site of incompatibility differed between the morphs; intramorph pollen tubes were blocked in the style of the short-styled morph and on the stigmatic surface of the long-styled morph. Butterflies carried pollen from the short- and long-styled morphs primarily on their head and proboscis, respectively. Natural pollination resulted in a higher proportion of pollen transfer from long- to short-styled plants than vice versa. Nevertheless, fruit set did not differ between morphs. CONCLUSIONS: Both Pentanisia species are fully distylous. Reciprocal herkogamy results in pollen from the two morphs being carried on different locations on pollinators' bodies, which in turn promotes intermorph pollination. Intramorph pollination does not result in fertilization, because of an effective heteromorphic incompatibility system.  相似文献   

18.
The tribe Pogonieae of Vanilloideae (Orchidaceae) consists of six genera, including Pogoniopsis, a myco-heterotrophic taxon with morphological characteristics distinct from the remaining of the tribe. A hypothesis about the phylogeny of the tribe was inferred, involving all currently recognized genera, based on isolated and combined sequence data of 5.8S, 18S and 26S (nrDNA) regions using parsimony and Bayesian analyses. Phylogenetic analyses show that inclusion of Pogoniopsis turns the tribe Pogonieae paraphyletic. All analyses reveal that Pogoniopsis is closely related to members of Epidendroideae. The pantropical Vanilla is monophyletic if Dictyophyllaria is assumed as synonym of Vanilla. Members of Pogonieae are pollinated by several groups of solitary and social bees, two pollination systems being recognized: reward-producing and deceptive. The molecular phylogeny suggests that ancestrals related to Pogonieae gave rise to two evolutionary lines: a tropical one with reward production of flowers, and a predominantly temperate regions invading line with deceptive flowers. Reward-producing flowers characterize the South and Central American clade (=Cleistes), while deceptive pollination is prominent in the clade that includes North American-Asiatic taxa plus the Amazonian genus Duckeella.  相似文献   

19.
Seeds of 310 species within the four major genera, Millettia, Tephrosia, Derris, Lonchocarpus and 25 minor satellite genera of the Tephrosieae, were analysed both qualitatively and semiquantitatively for basic non-protein amino acids and amines. This survey revealed that a notable feature of the tribe is the accumulation in the seeds of unusual guanidino derivatives (including canavanine, enduracididine, 2-aminoimidazole, γ-hydroxyhomoarginine and tetrahydrolathyrine) and amines, several of which are not known outside this group. It is significant that none has yet been found in the tropical Sophoreae nor have they been found in the Dalbergiese excluding Lonchocarpinae. This gives credence to the view that Tephrosieae should be broadened to include Dalbergieae subtribe Lonchocarpinae. The results of this study show that there are chemically defined subgeneric groups within the large genera Millettia, Derris and Lonchocarpus. Some of these chemically defined groups coincide with morphologically defined subgenera, while others do not.  相似文献   

20.
Flowers in the tribe Crotalarieae of the family Fabaceae are generally adapted to bee pollination mechanisms. Molecular systematics have recently provided a major step towards a profound insight into generic relationships, thereby creating the opportunity to re-evaluate the taxonomic and functional significance of flower structure in the tribe, with emphasis on the large genus Crotalaria. A representative sample of flowers from 211 species was dissected to record morphological character states. These data were supplemented from the literature to allow for generalizations for the tribe as a whole. Six structural–functional flower types were identified: (1) pump; (2) gullet; (3) hugging; (4) saddle; (5) tunnel and (6) brush (saddle and tunnel types described here for the first time). Crotalaria uniquely has the brush type, characterized by a rostrate keel, highly dimorphic anthers, stylar trichomes and elaborate callosities on the standard petal. Remarkably, Crotalaria and Bolusia are the only genera of the tribe Crotalarieae with callosities present in all of the species. In other genera, callosities are generally absent or infrequent. Trends towards specialization of pollination syndromes are apparent as assemblages of apomorphic states that co-occur in what we refer to here as “specialized flowers”; individual characters are labile or non-homologous (e.g. callosities) and diagnostically less valuable. Unique combinations of flower characters are often useful to support current generic concepts in Crotalarieae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号