首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ribulose-1,5-diphosphate oxygenase activity of ribulose-1,5-diphosphate carboxylase was completely inhibited by preincubation of the enzyme with 5mM hydroxylamine in presence of the substrate ribulose-1,5-diphosphate. Inhibition by hydroxylamine was uncompetitive with respect to ribulose-1,5-diphosphate and noncompetitive with respect to magnesium. Carboxylase activity was not affected by hydroxylamine. These results suggest that the two activities of the enzyme can be regulated differentially and that inhibiting the oxygenase activity does not stimulate the carboxylase activity of the enzyme. The data further suggest that the inhibition by hydroxylamine may be through its interaction with carbonyl groups of the enzyme exposed on the binding of ribulose-1,5-diphosphate to the protein.  相似文献   

2.
A substantial portion of the ribulose 1,5-diphosphate carboxylase activity in the endosperm of germinating castor beans (Ricinus communis var. Hale) is recovered in the proplastid fraction. The partially purified enzyme shows homology with the enzyme from spinach (Spinacia oleracea) leaves, as evidenced by its reaction against antibodies to the native spinach enzyme and to its catalytic subunit. The enzyme from the endosperm of castor beans has a molecular weight of about 500,000 and, with the exception of a higher affinity for ribulose 1,5-diphosphate, has similar kinetic properties to the spinach enzyme. The castor bean carboxylase is inhibited by oxygen and also displays ribulose 1,5-diphosphate oxygenase activity with an optimum at pH 7.5.  相似文献   

3.
Lord JM  Brown RH 《Plant physiology》1975,55(2):360-364
Ribulose 1,5-diphosphate carboxylase has been purified from extracts of autotrophically grown Chlorella fusca by ammonium sulfate precipitation and centrifugation on a linear sucrose density gradient. The enzyme was homogeneous by the criterion of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 530,000, and it was composed of two types of subunit of molecular weight 53,000 and 14,000. Ribulose 1,5-diphosphate, CO(2), and Mg(2+) had Michaelis constant values of 15 mum, 0.3 mm, and 0.37 mm, respectively. At high bicarbonate concentration (17 mm and 50 mm), 6-phosphogluconate inhibited the enzyme, the inhibition being noncompetitive with respect to ribulose 1,5-diphosphate (Ki 0.065 mm), whereas at low bicarbonate concentration (1 mm), 6-phosphogluconate activated the enzyme. Oxygen was a competitive inhibitor with respect to CO(2), suggesting the enzyme also functions as an oxygenase. This was confirmed by direct assay, a 1: 1 stoichiometry between ribulose 1,5-diphosphate consumed and O(2) uptake being observed.  相似文献   

4.
D-Ribulose 1,5-diphosphate carboxylase has been purified from autotrophically grown cells of the facultative chemolithotrophic hydrogen bacterium Alcaligenes eutrophus. The enzyme was homogeneous by the criteria of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 505000 determined by gel filtration and sucrose density gradient centrifugation, and a sedimentation coefficient of 18.2 S was obtained. It was demonstrated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis that the enzyme consists of two types of subunits of molecular weight 52000 and 13000. Electron microscopy on the intact and the partially dissociated enzyme lead to the construction of a model for the quaternary structure of the enzyme which is composed of 8 large and 8 small subunits. The most probable symmetry of the enzyme molecule is 4:2:2. Michaelis constant (Km) values for ribulose 1,5-diphosphate, Mg2+, and CO2 were 0.59 mM, 0.33 mM, and 0.066 mM measured under air. Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme also exhibits an oxygenase activity. The oxygenolytic cleavage of ribulose 1,5-diphosphate was shown and a 1:1 stoichiometry between oxygen consumption and 3-phosphoglycerate formation observed.  相似文献   

5.
The mechanism of oxygenase reaction catalysed by ribulose-1,5-diphosphate carboxylase was investigated using superoxide dismutase from bovine erythrocytes. Inclusion of superoxide dismutase in the assay mixture resulted in strong inhibition of oxygenase reaction. Ribulose-1,5-diphosphate was found to compete for superoxide anions with dismutase and nitroblue tetrazolium which also inhibited the oxygenase reaction. These observations indicate the possible involvement of superoxide anions in the oxygenase reaction.  相似文献   

6.
d-Ribulose 1,5-diphosphate carboxylase has been purified from autotrophically grown cells of the facultative chemolithotrophic hydrogen bacteriumAlcaligenes eutrophus. The enzyme was homogeneous by the criteria of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 505000 determined by gel filtration and sucrose density gradient centrifugation, and a sedimentation coefficient of 18.2 S was obtained. It was demonstrated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis that the enzyme consists of two types of subunits of molecular weight 52000 and 13000.Electron microscopy on the intact and the partially dissociated enzyme lead to the construction of a model for the quaternary structure of the enzyme which is composed of 8 large and 8 small subunits. The most probable symmetry of the enzyme molecule is 4:2:2.Michaelis constant (K m ) values for ribulose 1,5-diphosphate, Mg2-, and CO2 were 0.59 mM, 0.33 mM, and 0.066 mM measured under air. Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme also exhibits an oxygenase activity. The oxygenolytic cleavage of ribulose 1,5-diphosphate was shown and a 1:1 stoichiometry between oxygen consumption and 3-phosphoglycerate formation observed.Abbreviations DTE dithioerythritol - EDTA ethylenediamine tetraacetate - RuDP d-ribulose 1,5-diphosphate  相似文献   

7.
Ribulose-1,5-diphosphate car?ylase from the photosynthetic bacterium Chromatium catalyses the oxidative formation of phosphoglycolate and 3-phosphoglycerate from ribulose-1,5-diphosphate at an alkaline pH (9.3) in an atmosphere of oxygen. The catalytically active oligomeric form of the large subunit of the car?ylase molecule, Am, was proved to be functionally active in the ribulose-1,5-diphosphate oxygenase reaction without the presence of the smaller subunit.  相似文献   

8.
Ribulose-1,5-diphosphate carboxylase was purified fifteenfold from Rhodospirillum rubrum grown autotrophically under H2 and CO2. There was RuDP oxygenase activity associated with the carboxylase. The oxygenase had maximal activity at pH 9.4. Although these bacterial RuDP oxygenase and carboxylase activities were cold labile, activity could not be restored by treatment at 50° in the presence of Mg++ and a sulfhydryl reagent, in contrast to results with the enzyme from eukaryotes.  相似文献   

9.
Enzyme levels in relation to obligate phototrophy in chlamydobotrys   总被引:3,自引:3,他引:0       下载免费PDF全文
During the transition from photoheterotrophic growth on acetate to phototrophic growth on carbon dioxide, there is a decrease in isocitrate lyase and increase in ribulose-1,5-diphosphate carboxylase activity in Chlamydobotrys stellata cultures. The increase in ribulose-1,5-diphosphate carboxylase activity is the result of protein synthesis, there being a close correlation between increase in enzyme activity and protein precipitated by antibody to ribulose-1,5-diphosphate carboxylase. The purified ribulose-1,5-diphosphate carboxylase was similar to the constitutive enzyme from other green algae having a molecular weight of 530,000 and composed of two types of subunit of molecular weight 53,000 and 14,000.  相似文献   

10.
d-Ribulose 1,5-diphosphate carboxylase from extracts of the unicellular blue-green alga Aphanocapsa 6308 has been purified by ammonium sulphate precipitation and linear sucrose density gradient centrifugation. The molecular weight was estimated to be 525 000 and the enzyme consisted of two types of sub-unit of molecular weights 51 000 and 15 000. The small sub-units were not detected after purification involving acid precipitation but were observed if the acid precipitation step was omitted. The Michaelis constants for Mg2+ and CO2, when tested under air, were 0.35 mM and 0.071 mM respectively. Oxygen acted as a competitive inhibitor with respect to CO2, suggesting that the enzyme also acts as an oxygenase. This was confirmed by measuring ribulose diphosphate-dependent O2 uptake. A 1:1 stoichiometry between ribulose diphosphate utilization and O2 consumption was observed. 6-Phosphogluconate inhibited carboxylase activity both at high (20 mM) and low (1 mM) bicarbonate concentrations. The data are compared with the properties of ribulose diphosphate carboxylase from other autotrophic prokaryotes and from chloroplasts.Abbreviations RuDP d-Ribulose 1,5-diphosphate - EDTA ethylene diamine tetraacetic acid - GSH reduced glutathione - SDS sodium dodecyl sulphate - 6PGluc 6-phosphogluconate - STB supplemented Tris buffer  相似文献   

11.
A crude chloroplast preparation of primary leaves of Phaseolus vulgaris was allowed to incorporate 14C-leucine into protein. A chloroplast extract was prepared and purified for ribulose 1,5-diphosphate carboxylase by ammonium sulfate precipitation, chromatography on Sephadex G-200, and chromatography on Sepharose 4B. The distribution of radioactive protein and enzyme in fractions eluted from Sepharose 4B was nearly the same. The radioactivity in the product was in peptide linkage, since it was digested to a trichloroacetic acid-soluble product by Pronase. Whole cells in the plastid preparation were not involved in the incorporation of amino acid into the fraction containing ribulose 1,5-diphosphate carboxylase, since incorporation still occurred after removal of cells. The incorporation into the fraction containing ribulose 1,5-diphosphate carboxylase occurs on ribosomes of plastids, since this incorporation is inhibited by chloramphenicol. These plastid preparations may be incorporating amino acid into ribulose 1,5-diphosphate carboxylase, but the results are not conclusive on this point.  相似文献   

12.
Laing WA 《Plant physiology》1974,54(5):678-685
Kinetic properties of soybean net photosynthetic CO2 fixation and of the carboxylase and oxygenase activities of purified soybean (Glycine max [L.] Merr.) ribulose 1, 5-diphosphate carboxylase (EC 4.1.1.39) were examined as functions of temperature, CO2 concentration, and O2 concentration. With leaves, O2 inhibition of net photosynthetic CO2 fixation increased when the ambient leaf temperature was increased. The increased inhibition of CO2 fixation at higher temperatures was caused by a reduced affinity of the leaf for CO2 and an increased affinity of the leaf for O2. With purified ribulose 1,5-diphosphate carboxylase, O2 inhibition of CO2 incorporation and the ratio of oxygenase activity to carboxylase activity increased with increased temperature. The increased O2 sensitivity of the enzyme at higher temperature was caused by a reduced affinity of the enzyme for CO2 and a slightly increased affinity of the enzyme for O2. The similarity of the effect of temperature on the affinity of intact leaves and of ribulose 1,5-diphosphate carboxylase for CO2 and O2 provides further evidence that the carboxylase regulates the O2 response of photosynthetic CO2 fixation in soybean leaves. Based on results reported here and in the literature, a scheme outlining the stoichiometry between CO2 and O2 fixation in vivo is proposed.  相似文献   

13.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Rhodospirillum rubrum has been crystallized in a form that is suitable for structural studies by x-ray diffraction. The asymmetric unit of the crystal contains one dimeric enzyme molecule of molecular mass 101,000 Da. The enzyme was activated prior to crystallization and is presumed to be in the CO2-activated state in the crystal. The method of hydrophobicity correlation has been used to compare the amino acid sequence of this molecule (466 residues) to that of the large subunit of a higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (477 residues in Nicotiana tabacum). The pattern of residue hydrophobicities is similar along the two polypeptides. This suggests that the three-dimensional folding of the large polypeptide chains may be similar in plant and bacterial enzymes. If this is so, knowing the structure of either the plant or bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase should aid in learning the structure of the other.  相似文献   

14.
The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) FROM SPINACH CHLOROPLASTS IS STRONGLY REGULATED BY THE RATIO OF NADPH/NADP+, with the extent of this regulation controlled by the concentration of ribulose 1,5-diphosphate. Other metabolites of the reductive pentose phosphate cycle are far less effective in mediating the regulation of the enzyme activity by NADPH/NADP+ ratio. With a ratio of NADPH/NADP+ of 2, and a concentration of ribulose 1,5-diphosphate of 0.6 mM, the activity of the enzyme is completely inhibited. This level of ribulose 1,5-diphosphate is well within the concentration range which has been reported for unicellular green algae photosynthesizing in vivo. Ratios of NADPH/NADP+ of 2.0 have been measured for isolated spinach chloroplasts in the light and under physiological conditions. Since ribulose 1,5-diphosphate is a metabolite unique to the reductive pentose phosphate cycle and inhibits glucose-6-phosphate dehydrogenase in the presence of NADPH/NADP+ ratios found in chloroplasts in the light, it is proposed that regulation of the oxidative pentose phosphate cycle is accomplished in vivo by the levels of ribulose 1,5-diphosphate, NADPH, and NADP+. It already has been shown that several key reactions of the reductive pentose phosphate cycle in chloroplasts are regulated by levels of NADPH/NADP+ or other electron-carrying cofactors, and at least one key-regulated step, the carboxylation reaction is strongly affected by 6-phosphogluconate, the metabolic unique to the oxidative pentose phosphate cycle. Thus there is an interesting inverse regulation system in chloroplasts, in which reduced/oxidized coenzymes provide a general regulatory mechanism. The reductive cycle is activated at high NADPH/NADP+ ratios where the oxidative cycle is inhibited, and ribulose 1,5-diphosphate and 6-phosphogluconate provide further control of the cycles, each regulating the cycle in which it is not a metabolite.  相似文献   

15.
Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg2+, and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4°C was somewhat improved.  相似文献   

16.
17.
The catalytically active oligomeric form of the larger subunit, Am, obtained from spinach leaf ribulose-1,5-diphosphate carboxylase by pretreatment with p-mercuribenzoate at pH 7.5 followed by incubation at pH 9.0, was free of the smaller subunit based on C-terminal amino acid analyses. Valine was the predominant C-terminus of the Am preparations, the release of tyrosine being negligibly small [cf. Sugiyama and Akazawa, Biochemistry 9 (1970) 4499]. The pH optimum of the ribulose-1,5-diphosphate carboxylase reaction by Am was about 8.5, in comparison to the native enzyme which showed an alkaline pH optimum only in the absence of Mg2+. The substrate saturation curve of the catalytic subunit with respect to bicarbonate followed the Michaelis-Menten equation, as contrasted to the anomalous reaction kinetics of the native ribulose-1,5-diphosphate carboxylase molecule reported previously. These overall results indicate that the allosteric properties of spinach ribulose-1,5-diphosphate carboxylase are possibly conveyed by a unique structural conformation that requires the presence of the smaller subunit in association with the larger catalytic subunit component of the enzyme molecule.  相似文献   

18.
Klaus Lendzian  James A. Bassham 《BBA》1975,396(2):260-275
The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly regulated by the ratio of NADPH/NADP+, with the extent of this regulation controlled by the concentration of ribulose 1,5-diphosphate. Other metabolites of the reductive pentose phosphate cycle are far less effective in mediating the regulation of the enzyme activity by NADPH/NADP+ ratio. With a ratio of NADPH/NADP+ of 2, and a concentration of ribulose 1,5-diphosphate of 0.6 mM, the activity of the enzyme is completely inhibited.This level of ribulose 1,5-diphosphate is well within the concentration range which has been reported for unicellular green algae photosynthesizing in vivo. Ratios of NADPH/NADP+ of 2.0 have been measured for isolated spinach chloroplasts in the light and under physiological conditions.Since ribulose 1,5-diphosphate is a metabolite unique to the reductive pentose phosphate cycle and inhibits glucose-6-phosphate dehydrogenase in the presence of NADPH/NADP+ ratios found in chloroplasts in the light, it is proposed that regulation of the oxidative pentose phosphate cycle is accomplished in vivo by the levels of ribulose 1,5-diphosphate, NADPH, and NADP+.It already has been shown that several key reactions of the reductive pentose phosphate cycle in chloroplasts are regulated by levels of NADPH/NADP+ or other electron-carrying cofactors, and at least one key-regulated step, the carboxylation reaction is strongly affected by 6-phosphogluconate, the metabolite unique to the oxidative pentose phosphate cycle. Thus there is an interesting inverse regulation system in chloroplasts, in which reduced/oxidized coenzymes provide a general regulatory mechanism. The reductive cycle is activated at high NADPH/NADP+ ratios where the oxidative cycle is inhibited, and ribulose 1,5-diphosphate and 6-phosphogluconate provide further control of the cycles, each regulating the cycle in which it is not a metabolite.  相似文献   

19.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

20.
D-Ribulose-1,5-diphosphate carboxylase from Dasycladus was purified, and the gross dimensions were obtained by means of small-angle X-ray scattering measurements in solution. Dissolved single crystals of this enzyme (called “fraction I protein”) gave the same hydrodynamic parameters as the purified form. The molecular weight was found to be 535,000, and a radius of gyration of Rg = 45.5 Å was determined. The experimental scattering curves revealed a geometrical particle of D-Ribulose-1,5-diphosphate carboxylase with gross dimensions of that of a hollow sphere with outer radius of 56 Å and inner radius of 12 Å. Determinations of the diffusion coefficients lead to the conclusion that the enzyme has a spherical shape of almost uniform density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号