首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate whether exposure of HPV-G cells to irradiated cell conditioned medium (ICCM) could induce an adaptive response if the cells were subsequently challenged with a higher ICCM dose. Clonogenic survival and major steps in the cascade leading to apoptosis, such as calcium influx and loss of mitochondrial membrane potential, were examined to determine whether these events could be modified by giving a priming dose of ICCM before the challenge dose. Clonogenic survival data indicated an ICCM-induced adaptive response in HPV-G cells "primed" with 5 mGy or 0.5 Gy ICCM for 24 h and then exposed to 0.5 Gy or 5 Gy ICCM. Reactive oxygen species (ROS) were found to be involved in the bystander-induced cell death. Calcium fluxes varied in magnitude across the exposed cell population, and a significant number of the primed HPV-G cells did not respond to the challenge ICCM dose. No significant loss of mitochondrial membrane potential was observed when HPV-G cells were exposed to 0.5 Gy ICCM for 24 h followed by exposure to 5 Gy ICCM for 6 h. Exposure of HPV-G cells to 5 mGy ICCM for 24 h followed by exposure to 0.5 Gy ICCM for 18 h caused a significant increase in mitochondrial mass and a change in mitochondrial location, events associated with the perpetuation of genomic instability. This study has shown that a priming dose of ICCM has the ability to induce an adaptive response in HPV-G cells subsequently exposed to a challenge dose of ICCM.  相似文献   

2.
Dilution of irradiated cell conditioned medium and the bystander effect   总被引:1,自引:0,他引:1  
While nontargeted and low-dose effects such as the bystander effect are now accepted, the mechanisms underlying the response have yet to be elucidated. It has been shown that the transfer of irradiated cell conditioned medium (ICCM) can kill cells that are not directly irradiated; however, to date the effect of ICCM concentration on cell killing has not been reported. The occurrence of a bystander effect was determined by measuring cell survival after exposure to various ICCM dilutions, using the colony-forming assay, in cells of six human cell lines with varied bystander responses and tumor/ p53 status. Autologous ICCM transfer for these cell lines induced a bystander effect as reported previously. ICCM from these cell lines was transferred to cells of a common reporter cell line (HPV-G) to investigate whether the lack of an induced bystander effect was due to their inability to generate or to respond to a bystander signal(s). ICCM from cells of four cell lines induced a bystander effect in HPV-G reporter cells, confirming that signal production is a critical factor. A saturation response was observed when ICCM was diluted. Survival was found to increase linearly until a plateau was reached and the bystander effect was abolished at 2x dilution. The effect of ICCM from the different cell lines reached a plateau at different dilutions, which were found to correlate with the cell line's radiosensitivity.  相似文献   

3.
The bystander effect describes radiation-like damage in unirradiated cells either in the vicinity of irradiated cells or exposed to medium from irradiated cells. This study aimed to further characterize the poorly understood mitochondrial response to both direct irradiation and bystander factor(s) in human keratinocytes (HPV-G) and Chinese hamster ovarian cells (CHO-K1). Oxygen consumption rates were determined during periods of state 4, state 3 and uncoupled respiration. Mitochondrial mass was determined using MitoTracker FM. CHO-K1 cells showed significantly reduced oxygen consumption rates 4 h after exposure to 5 Gy direct radiation and irradiated cell conditioned medium (ICCM) and an apparent recovery 12-24 h later. The apparent recovery was likely due to the substantial increase in mitochondrial mass observed in these cells as soon as 4 h after exposure. HPV-G cells, on the other hand, showed a sustained increase in oxygen consumption rates after ICCM exposure and a transient increase 4 h after exposure to 5 Gy direct radiation. A significant increase in mitochondrial mass per HPV-G cell was observed after exposure to both direct radiation and ICCM. These findings are indicative of a stress response to mitochondrial dysfunction that increases the number of mitochondria per cell.  相似文献   

4.
In order to elucidate the role of the mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, as well as the survival-associated PI3K/Akt signaling pathway, in the response to chemotherapy, we have conducted a comparative study regarding the effects of doxorubicin on these pathways. Doxorubicin was determined to elicit the apoptosis of NIH3T3 cells in a dose-dependent manner. Prior to cell death, both Akt and p38 MAPK were transiently activated, and subsequently inactivated almost wholly, whereas ERK and JNK evidenced sustained activations in response to the drug treatment. The inhibition of PI3K/Akt and p38 MAPK both accelerated and enhanced doxorubicin-induced apoptosis and ERK inhibition apparently exerted negative effect on apoptosis. The modulation of PI3K/Akt activation by treatment of LY294002 or expression of Akt mutants such as Akt-DN or Myr-Akt exerted a significant effect on the activation of ERK1/2. We also observed that PI3K/Akt and sustained ERK activation were associated intimately with the etoposide-induced apoptosis. Taken together, our results clearly suggest that the differential regulation of the PI3K/Akt, ERK1/2, and p38 MAPK signaling pathways are crucial in the context of DNA-damaging drug-induced apoptosis, and this has compelled us to propose that the sustained activation of ERK1/2 pathway may be generally involved in the apoptosis induced by anticancer DNA-damaging drugs, including doxorubicin and etoposide.  相似文献   

5.
6.
Exposure of unirradiated human keratinocytes to irradiated cell conditioned medium (ICCM) is known to cause a cascade of events that leads to reproductive death and apoptosis. This study investigates the effect of ICCM on clonogenic survival, mitochondrial mass and BCL2 expression in unirradiated keratinocytes. Exposure to 5 mGy, 0.5 Gy and 5 Gy ICCM resulted in a significant decrease in clonogenic survival. Human keratinocytes incubated with ICCM containing an antioxidant, N-acetylcysteine, showed no significant decrease in clonogenic survival. HPV-G cells incubated with ICCM containing a caspase 9 inhibitor showed no significant decrease in clonogenic survival when the ICCM dose was < or =0.5 Gy. A significant increase in mitochondrial mass per cell was observed after exposure to 5 mGy and 0.5 Gy ICCM. A change in the distribution of the mitochondria from a diffuse cytoplasmic distribution to a more densely concentrated perinuclear distribution was also observed at these doses. No significant increase in mitochondrial mass or change in distribution of the mitochondria was found for 5 Gy ICCM. Low BCL2 expression was observed in HPV-G cells exposed to 5 mGy or 0.5 Gy ICCM, whereas a large significant increase in BCL2 expression was observed in cells exposed to 5 Gy ICCM. This study has shown that low-dose irradiation can cause cells to produce medium-borne signals that can cause mitochondrial changes and the induction of BCL2 expression in unirradiated HPV-G cells. The dose dependence of the mitochondrial changes and BCL2 expression suggests that the mechanisms may be aimed at control of response to radiation at the population level through signaling pathways.  相似文献   

7.
Summary Among the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.  相似文献   

8.
Iridoviruses are large DNA viruses that infect invertebrates and poikilothermic vertebrates, and result in significant economic losses in aquaculture production, and drastic declines in amphibian populations. Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in farm-raised soft-shelled turtles (Trionyx sinensis). In the present study, the mechanisms of STIV-induced cell death and the roles of the mitogen-activated protein kinase (MAPK) signaling pathway were investigated. STIV infection evoked typical apoptosis in fish cells, as demonstrated by the formation of apoptotic bodies, positive terminal deoxynucleotidyl transferase-mediated nicked-end labeling, and caspase-3 activation. The translocation of cytochrome c from mitochondria to cytoplasm, and caspase-9 activation suggested that a mitochondria-mediated pathway was involved in STIV-induced apoptosis. Moreover, MAPK pathways, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK signaling were activated during STIV infection. Using specific inhibitors, we found that MAPK signaling molecules, including ERK, JNK and p38 MAPK, were important for virus release, whereas, only ERK and p38 MAPK were involved in STIV-induced apoptosis by modulating caspase-3 activity. Taken together, our findings shed light on the roles of the MAPK signaling pathway in iridovirus-induced apoptosis and virus replication, which provides new insights into understanding iridovirus–host interaction.  相似文献   

9.
为了探讨酸性鞘磷脂水解酶 (ASM)和MAPK信号通路在UVA诱导的细胞凋亡中的作用 ,用DNA梯形条带 (DNAladder)和荧光显微镜鉴定细胞凋亡 ,Western印迹分析MAPK信号通路的激活情况 .结果显示 :①经UVA照射 ,正常的淋巴母细胞JY出现严重的细胞凋亡 ,而ASM遗传性缺陷的淋巴母细胞MS1 4 1 8出现轻微凋亡 ;给予ASM特异性抑制剂NB6 ,UVA诱导的JY细胞凋亡明显减轻 ,表明UVA诱导的细胞凋亡依赖于ASM .②UVA照射后 ,磷酸化ERK含量在MS1 4 1 8细胞中明显升高 ,在JY细胞中受到抑制 ;UVA照射前给予NB6 ,JY细胞中磷酸化ERK含量上升 ,表明ASM能抑制ERK的激活 .③UVA照射后 ,磷酸化JNK含量在MS1 4 1 8细胞中几乎没有变化 ,而在JY细胞中含量升高 ;UVA照射前给予NB6 ,JY细胞中磷酸化JNK含量没有明显升高 ,表明ASM激活JNK通路 .④NB6对UVA激活的p38MAPK信号通路没有影响 ,表明p38的激活与ASM关系不大 .研究表明 ,UVA诱导的细胞凋亡是通过激活ASM、激活JNK信号通路并抑制ERK信号通路来完成的  相似文献   

10.
The pineal gland hormone melatonin has been recently described to downregulate the intrinsic (or damage-induced) pathway of apoptosis in human leukocytes. These properties appear to depend on a specific mitochondrial signaling of melatonin which is associated with a lower generation of reactive oxygen species and a better control of redox-sensitive components such as the antiapoptotic protein Bcl-2. Other elements upstream in this signaling are expected to contribute regulatory roles that remain unexplored. The aim of this study was to investigate whether the extracellular signal-regulated kinase (ERK), which controls the balance between survival and death-promoting genes throughout the MAPK pathway, is involved in the antiapoptotic signaling of melatonin. Human monocytic U937 cells irradiated with UVB light were used as a model of stress-induced apoptosis. In this model we found that pharmacological concentrations of melatonin (1 mM) were able to decrease superoxide anion production, mitochondrial damage, and caspase-dependent apoptosis by improved Bcl-2 levels and decreased Cyt c release in the cytoplasm. Moreover, melatonin increased the phosphorylative activation of ERK 1/2 independently from the presence of UVB stress, and decreased the UVB-mediated activation of the stress kinases p38 MAPK and JNK. The ERK 1/2 inhibitor PD98059, but not the p38 MAPK inhibitor SB203580, abolished to different extents the effects that melatonin had on the UVB-induced ROS generation, mitochondrial dysfunction, and apoptosis. Using these inhibitors, a cross-talk effect between stress and survival-promoting kinases was tentatively identified, and confirmed the hierarchical role of ERK MAPK phosphorylation in the signaling of melatonin. In conclusion, melatonin sustains the activation of the survival-promoting pathway ERK MAPK which is required to antagonize UVB-induced apoptosis of U937 cells. This kinase mediates also the antioxidant and mitochondrial protection effects of this hormonal substance that may find therapeutic applications in inflammatory and immune diseases associated with leukocyte oxidative stress and accelerated apoptosis.  相似文献   

11.
12.
The mammalian family of mitogen-activated protein kinases (MAPKs) includes extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK), with each MAPK signaling pathway consisting of at least three components, a MAPK kinase kinase (MAP3K), a MAPK kinase (MAP2K), and a MAPK. The MAPK pathways are activated by diverse extracellular and intracellular stimuli including peptide growth factors, cytokines, hormones, and various cellular stressors such as oxidative stress and endoplasmic reticulum stress. These signaling pathways regulate a variety of cellular activities including proliferation, differentiation, survival, and death. Deviation from the strict control of MAPK signaling pathways has been implicated in the development of many human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and various types of cancers. Persistent activation of the JNK or p38 signaling pathways has been suggested to mediate neuronal apoptosis in AD, PD, and ALS, whereas the ERK signaling pathway plays a key role in several steps of tumorigenesis including cancer cell proliferation, migration, and invasion. In this review, we summarize recent findings on the roles of MAPK signaling pathways in human disorders, focusing on cancer and neurodegenerative diseases including AD, PD, and ALS.  相似文献   

13.
Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell Counting Kit-8 (CCK-8) assay. Chondrocyte apoptosis induced by mechanical stress was confirmed by annexin V/propidium iodide (PI) staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Western blot analysis revealed that static load-induced chondrocyte apoptosis was accompanied by increased phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (MAPK). The loss of mitochondrial membrane potential (ΔΨm), increased Cytochrome c release, and activated Caspase-9 and Caspase-3, indicating that the mitochondrial pathway is involved in mechanical stress-induced chondrocyte apoptosis. Treatment with inhibitors of JNK (SP600125), p38 MAPK (SB203580), and ERK (PD98059) prior to mechanical stimulation reversed both the static load-induced chondrocyte apoptosis and the activation of JNK, p38 MAPK, and ERK. Taken together, the data presented in this study demonstrate that mechanical stress induces apoptosis in rat cervical endplate chondrocytes through the MAPK-mediated mitochondrial apoptotic pathway.  相似文献   

14.
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0-10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90-240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor alpha receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor alpha (TGFalpha) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFalpha cleavage 120-180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFalpha. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFalpha. Neutralization of TGFalpha function by an anti-TGFalpha antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFalpha-EGFR-MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.  相似文献   

15.
Abstract

The generic mitogen-activated protein kinases (MAPK) signaling pathway is shared by four distinct cascades, including the extracellular signal-related kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), p38-MAPK and ERK5. Mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathway is reported to be associated with the cell proliferation, differentiation, migration, senescence and apoptosis. The literatures were searched extensively and this review was performed to review the role of MAPK/ERK signaling pathway in cell proliferation, differentiation, migration, senescence and apoptosis.  相似文献   

16.
Lipid peroxidation byproducts, such as 4-hydroxynonenal (HNE) and 4-oxo-2-nonenal (ONE), induce cell death in a wide variety of cell types, partly by modulating intracellular signaling pathways. However, the specific mechanisms involved, particularly for ONE, are unclear while c-Jun N-terminal kinase (JNK) has been shown to be essential in HNE-mediated cytotoxicity. In this study, we examined the role of mitogen-activated protein kinases signaling pathways in ONE-induced cytotoxicity in SH-SY5Y human neuroblastoma cells and found that ONE strongly induces the phosphorylation of extracellular signal-regulated kinase (ERK) and JNK, but not p38 MAPK. Interestingly, a transient exposure of the cells to ONE resulted in cell death, which contrasts with HNE-mediated toxicity. Importantly, blocking the ERK pathway, but not the JNK pathway, protected cells against ONE-induced cytotoxicity indicating a striking difference between the ONE- and HNE-mediated cytotoxicity mechanisms. Furthermore, inhibition of ERK reduced ONE-induced phosphorylation of p53, a key modulator of the cellular stress response, and the proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), a hallmark of apoptosis. Overall, these data strongly suggest that ERK plays an essential role in ONE-mediated cytotoxicity and that ERK is an upstream component of p53-mediated apoptosis.  相似文献   

17.
Lanthanum chloride (LaCl3) has been shown to retard the progression of established atherosclerotic lesions in animal models, and used as a calcium channel blocker in various cellular experiments. In this study, we assessed the role of lanthanum chloride (LaCl3) in H2O2-enhanced calcification in rat calcifying vascular cells (CVCs) and examined the involvement of MAPK signaling pathways. H2O2 induced growth inhibition of CVCs, as well as increases in intracellular levels of calcium and reactive oxygen species, ALP activity, apoptosis and calcium deposition. These effects of H2O2 were suppressed by pretreatment of the cells with 1 μM of LaCl3 for 2 h. In addition, H2O2 activated the phosphorylation of ERK1/2, JNK and p38 MAPK, but only the last two were associated with the ALP activity. Our findings demonstrate that H2O2-enhanced osteoblastic differentiation and apoptosis are responsible for the increased calcification in rat CVCs, and LaCl3 can counteract these effects by suppressing the activation of JNK (JNK2, but not JNK1) and p38 MAPK signaling pathway.  相似文献   

18.
Mitogen-activated protein kinases (MAP kinases) are intracellular signaling kinases activated by phosphorylation in response to a variety of extracellular stimuli. Mammalian MAP kinase pathways are composed of three major pathways: MEK1 (mitogen-activated protein kinase kinase 1)/ERK 1/2 (extracellular signal-regulated kinases 1/2)/p90 RSK (p90 ribosomal S6 kinase), JNK (c-Jun amino (N)-terminal kinase)/c-Jun, and p38 MAPK pathways. These pathways coordinately mediate physiological processes such as cell survival, protein synthesis, cell proliferation, growth, migration, and apoptosis. The involvement of MAP kinase in noise-induced hearing loss (NIHL) has been implicated in the cochlea; however, it is unknown how expression levels of MAP kinase change after the onset of NIHL and whether they are regulated by transient phosphorylation or protein synthesis. CBA/J mice were exposed to 120-dB octave band noise for 2 h. Auditory brainstem response confirmed a component of temporary threshold shift within 0–24 h and significant permanent threshold shift at 14 days after noise exposure. Levels and localizations of phospho- and total- MEK1/ERK1/2/p90 RSK, JNK/c-Jun, and p38 MAPK were comprehensively analyzed by the Bio-Plex® Suspension Array System and immunohistochemistry at 0, 3, 6, 12, 24 and 48 h after noise exposure. The phospho-MEK1/ERK1/2/p90 RSK signaling pathway was activated in the spiral ligament and the sensory and supporting cells of the organ of Corti, with peaks at 3–6 h and independently of regulations of total-MEK1/ERK1/2/p90 RSK. The expression of phospho-JNK and p38 MAPK showed late upregulation in spiral neurons at 48 h, in addition to early upregulations with peaks at 3 h after noise trauma. Phospho-p38 MAPK activation was dependent on upregulation of total-p38 MAPK. At present, comprehensive data on MAP kinase expression provide significant insight into understanding the molecular mechanism of NIHL, and for developing therapeutic models for acute sensorineural hearing loss.  相似文献   

19.
In recent years, indole-indazolyl hydrazide-hydrazone derivatives with strong cell growth inhibition and apoptosis induction characteristics are being strongly screened for their cancer chemo-preventive potential. In the present study, N-methyl and N,N-dimethyl bis(indolyl)hydrazide-hydrazone analog derivatives were designed, synthesized and allowed to evaluate for their anti-proliferative and apoptosis induction potential against cervical (HeLa), breast (MCF-7 and MDA-MB-231) and lung (A549) cancer cell lines relative to normal HEK293 cells. The MTT assay in conjunction with mitochondrial potential assays and the trypan blue dye exclusion were employed to ascertain the effects of the derivatives on the cancer cells. Further, mechanistic studies were conducted on compound 14a to understand the biochemical mechanisms and functional interactions with various signaling pathways triggered in HeLa and MCF-7 cells. Compound 14a induced apoptosis via caspase independent pathway through the participation of mitogen-activated protein kinases (MAPK) such as extracellular signal related kinase (ERK) and p38 as well as p53 pathways. It originates the activation of pro-apoptotic proteins such as Bak and Mcl-1s and also strongly induced the generation of reactive oxygen species. In downstream signaling pathway, activated p53 protein interacted with MAPK pathways, including SAPK/c-Jun N-terminal protein kinase (JNK), p38 and ERK kinases resulting in apoptotic cell death. The involvement of MAPK cascades such as p38, ERK and p38 on compound 14a induced apoptotic cell death was evidenced by the fact that the inclusion of specific inhibitors of p38, ERK1/2 and JNK MAPK (SB2035809, PD98059 and SP600125) prevented the compound 14a towards induced apoptosis. The results clearly showed that MAP kinase cascades were crucial for apoptotic response in compound 14a induced cellular killing and were dependent on p53 activity. Based on the results, compound 14a was identified as a promising candidate for cancer therapeutics and these findings furnish a basis for further in vivo experiments on anti-proliferative activity.  相似文献   

20.
The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl(3)), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号