首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have investigated the effect of copper binding on the structural properties of hemocyanin (Hc). To this aim, we have studied the holo- and apo-form of the protein, both in the hexameric and in the monomeric state (CaeSS2 subunit), with experimental approaches that report on the protein aggregation and conformational stability. The results of gel-filtration chromatography and small angle X-ray scattering (SAXS) provide evidence that the hydrodynamic and gyration radius (R(g)) of Hc in the hexameric form only slightly increase upon copper removal, whereas a remarkable enhancement in the R(g) value is observed for the CaeSS2 monomer. CD measurements in the far- and near-UV region indicate that removal of copper only marginally affects the conformation of the hexameric Hc. Instead, copper depletion in the CaeSS2 strongly alters the tertiary structure of the monomer (near-UV CD), even though it is almost inconsequential on the secondary structure content (far-UV CD). These findings are fully consistent with the results of limited proteolysis experiments showing that the hexameric Hc is similarly resistant to proteolysis by trypsin both in the holo- and apo-form. Conversely, the apo-form of CaeSS2 monomer is much more susceptible to proteolytic attack by trypsin than the holo-form. Based on SAXS measurements, the concentration-dependent oligomerization process for apo-CaeSS2 has been analyzed on the basis of a thermodynamic model involving a concentration-dependent equilibrium between a monomer in a native-like and an hexameric aggregate of monomers.  相似文献   

2.
The kinetics of denaturation and aggregation of rabbit muscle glycogen phosphorylase b in the presence of guanidine hydrochloride (GuHCl) have been studied. The curve of inactivation of phosphorylase b in time includes a region of the fast decline in the enzymatic activity,an intermediate plateau,and a part with subsequent decrease in the enzymatic activity. The fact that the shape of the inactivation curves is dependent on the enzyme concentration testifies to the dissociative mechanism of inactivation. The dissociation of phosphorylase b dimers into monomers in the presence of GuHCl is supported by sedimentation data. The rate of phosphorylase b aggregation in the presence of GuHCl rises as the denaturant concentration increases to 1.12 M; at higher concentration of GuHCl, suppression of aggregation occurs. At rather low concentration of the protein (0.25 mg/ml), the terminal phase of aggregation follows the kinetics of a monomolecular reaction (the reaction rate constant is equal to 0.082 min–1;1 M GuHCl, 25°C). At higher concentration of phosphorylase b (0.75 mg/ml), aggregation proceeds as a trimolecular reaction.  相似文献   

3.
4.
The steady-state and time-resolved fluorescence properties of the multitryptophan minimal subunit CaeSS2 from Carcinus aestuarii hemocyanin have been studied with the aim of probing the environment of the fluorophores within the protein matrix. Subunit a of Panulirus interruptus hemocyanin, whose X-ray structure is known, has been also studied. The results are compared with those collected with other two monomeric fractions (CaeSS1, CaeSS3) produced by dissociation of the native, oligomeric protein as well as with those of the hexameric aggregate. Three classes of tryptophan residues can be singled out by a combination of fluorescence quenching and lifetime measurements on the holo-Hc (the copper containing, oxygen binding form) and the apo-Hc (the copper-free derivative). One class of tryptophans is exposed to the protein surface. Some of these residues are proposed to be involved in the intersubunit interactions in CaeSS1 and CaeSS3 fractions whereas in CaeSS2 the protein matrix masks them. This suggests the occurrence of conformational rearrangements after detachment of the subunit from the native aggregate, which could explain the inability of CaeSS2 to reassociate. A second class of tryptophan has been correlatively assigned, by comparison with the results obtained with Panulirus interruptus hemocyanin, to residues in close proximity to the active site. The third class includes buried, active site-distant, residues.  相似文献   

5.
The structural changes of ferrous Cyt-c that are induced by binding to SDS micelles, phospholipid vesicles, DeTAB, and GuHCl as well as by high temperatures and changes in the pH have been studied by RR and UV-Vis absorption spectroscopies. Four species have been identified in which the native methionine-80 ligand is removed from the heme iron. This coordination site is either occupied by a histidine (His-33 or His-26) to form a 6cLS configuration, which is the prevailing species in GuHCl at pH 7.0 and ambient temperature, or remains vacant to yield a 5cHS configuration. The three identified 5cHS species differ with respect to the hydrogen-bond interactions of the proximal histidine ligand (His-18) and include a nonhydrogen-bonded, a hydrogen-bonded, and a deprotonated imidazole ring. These structural motifs have been found irrespective of the unfolding conditions used. An unambiguous spectroscopic distinction of these 5cHS species is possible on the basis of the Fe-N(imidazole) stretching vibrations, the RR bands in the region between 1300 and 1650 cm(-1), and the electronic transitions in the Soret- and Q-band regions. In acid and neutral solutions, the species with a hydrogen-bonded and a nonhydrogen-bonded His-18 prevail, whereas in alkaline solutions a configuration with a deprotonated His-18 ligand is also observed. Upon lowering the pH or increasing the temperature in GuHCl solutions, the structure on the proximal side of the heme is perturbed, resulting in a loss of the hydrogen-bond interactions of the His-18 ligand. Conversely, the hydrogen-bonded His-18 of ferrous Cyt-c is stabilized by electrostatic interactions which increase in strength from phospholipid vesicles to SDS micelles. The results here suggest that unfolding of Cyt-c is initiated by the rupture of the Fe-Met-80 bond and structural reorganizations on the distal side of the heme pocket, whereas the proximal part is only affected in a later stage of the denaturation process.  相似文献   

6.
More than 110 mutations in dimeric, Cu,Zn superoxide dismutase (SOD) have been linked to the fatal neurodegenerative disease, amyotrophic lateral sclerosis (ALS). In both human patients and mouse model studies, protein misfolding has been implicated in disease pathogenesis. A central step in understanding the misfolding/aggregation mechanism of this protein is the elucidation of the folding pathway of SOD. Here we report a systematic analyses of unfolding and folding kinetics using single- and double-jump experiments as well as measurements as a function of guanidium chloride, protein, and metal concentration for fully metallated (holo) pseudo wild-type and ALS-associated mutant (E100G, G93R, G93A, and metal binding mutants G85R and H46R) SODs. The kinetic mechanism for holo SODs involves native dimer, monomer intermediate, and unfolded monomer, with variable metal dissociation from the monomeric states depending on solution conditions. The effects of the ALS mutations on the kinetics of the holoproteins in guanidium chloride are markedly different from those observed previously for acid-induced unfolding and for the unmetallated (apo) forms of the proteins. The mutations decrease the stability of holo SOD mainly by increasing unfolding rates, which is particularly pronounced for the metal-binding mutants, and have relatively smaller effects on the observed folding kinetics. Mutations also seem to favour increased formation of a Zn-free monomer intermediate, which has been implicated in the formation of toxic aggregates. The results reveal the kinetic basis for the extremely high stability of wild-type holo SOD and the possible consequences of kinetic changes for disease.  相似文献   

7.
cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCl)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.  相似文献   

8.
Canavalia ensiformis (jack bean) alpha-urease is a hexameric protein characterized by a complex denaturation mechanism. In previous papers, we have shown that a hydrophobic 8-anilino-1-naphthalenesulfonic acid (ANSA) binding conformer could be populated in a moderate concentration of denaturant. This state was obtained under conditions that had no detectable impact on its tertiary structure, as indicated by fluorescence measurements. In the present study, we further characterized this ANSA-binding state in an attempt to understand urease behavior. Evidence presented here shows that the presence of ANSA was not required for the generation of the conformer and that its affinity for ANSA came from an increase in hydrophobicity leading to aggregation. Circular dichroism investigation of urease revealed that it had periodical secondary structure content similar to Klebsiella aerogenes urease (secondary structures calculated on the basis of crystallographic data). The impact of 0.9 M guanidine hydrochloride (GuHCl) on soluble urease secondary structures was minimal but is compatible with a slight increase in beta-sheet structures. Such modification may indicates that aggregation involves amyloid-like fibril formation. Electron microscopy analysis of urease in the absence of GuHCl revealed the presence of urease hexamers (round shape 13 nm in diameter). These particles disappeared in the presence of moderate denaturant concentration owing to the formation of aggregates and fibril-like structures. The fibrils obtained in 1.5 M GuHCl had an average diameter of 6.5 nm, suggesting that urease hexamers dissociated into smaller oligomeric forms when forming such fibrils.  相似文献   

9.
Chaperonins cpn60/cpn10 (GroEL/GroES in Escherichia coli) assist folding of nonnative polypeptides. Folding of the chaperonins themselves is distinct in that it entails assembly of a sevenfold symmetrical structure. We have characterized denaturation and renaturation of the recombinant human chaperonin 10 (cpn10), which forms a heptamer. Denaturation induced by chemical denaturants urea and guanidine hydrochloride (GuHCl) as well as by heat was monitored by tyrosine fluorescence, far-ultraviolet circular dichroism, and cross-linking; all denaturation reactions were reversible. GuHCl-induced denaturation was found to be cpn10 concentration dependent, in accord with a native heptamer to denatured monomer transition. In contrast, urea-induced denaturation was not cpn10 concentration dependent, suggesting that under these conditions cpn10 heptamers denature without dissociation. There were no indications of equilibrium intermediates, such as folded monomers, in either denaturant. The different cpn10 denatured states observed in high [GuHCl] and high [urea] were supported by cross-linking experiments. Thermal denaturation revealed that monomer and heptamer reactions display the same enthalpy change (per monomer), whereas the entropy-increase is significantly larger for the heptamer. A thermodynamic cycle for oligomeric cpn10, combining chemical denaturation with the dissociation constant in absence of denaturant, shows that dissociated monomers are only marginally stable (3 kJ/mol). The thermodynamics for co-chaperonin stability appears conserved; therefore, instability of the monomer could be necessary to specify the native heptameric structure.  相似文献   

10.
11.
Heme-linked proteins, such as cytochromes, are popular subjects for protein folding studies. There is the underlying question of whether the heme affects the structure of the denatured state by cross-linking it and forming other interactions, which would perturb the folding pathway. We have studied wild-type and mutant cytochrome b562 from Escherichia coli, a 106 residue four-alpha-helical bundle. The holo protein apparently refolds with a half-life of 4 micros in its ferrous state. We have analysed the folding of the apo protein using continuous-flow fluorescence as well as stopped-flow fluorescence and CD. The apo protein folded much more slowly with a half-life of 270 micros that was unaffected by the presence of exogenous heme. We examined the nature of the denatured states of both holo and apo proteins by NMR methods over a range of concentrations of guanidine hydrochloride. The starting point for folding of the holo protein in concentrations of denaturant around the denaturation transition was a highly ordered native-like species with heme bound. Fully denatured holo protein at higher concentrations of denaturant consisted of denatured apo protein and free heme. Our results suggest that the very fast folding species of denatured holo protein is in a compact state, whereas the normal folding pathway from fully denatured holo protein consists of the slower folding of the apo protein followed by the binding of heme. These data should be considered in the analysis of folding of heme proteins.  相似文献   

12.
We studied the temperature- and denaturant-induced denaturation of two thermophilic esterases, AFEST from Archeoglobus fulgidus and EST2 from Alicyclobacillus acidocaldarius, by means of circular dichroism measurements. Both enzymes showed a very high denaturation temperature: 99 degrees C for AFEST and 91 degrees C for EST2. They also showed a remarkable resistance against urea; at half-completion of the transition the urea concentration was 7.1 M for AFEST and 5.9 M for EST2. On the contrary, both enzymes showed a weak resistance against GuHCl; at half-completion of the transition the GuHCl concentration was 2.0 M for AFEST and 1.9 M for EST2. The thermodynamic parameters characterizing urea- and GuHCl-induced denaturation of the studied enzymes have been obtained by both the linear extrapolation model and the denaturant binding model. The dependence of the thermal stability on NaCl concentration for both esterases has also been determined. A careful analysis of the data, coupled with available structural information, has allowed the proposal of a reliable interpretation.  相似文献   

13.
Arai S  Hirai M 《Biophysical journal》1999,76(4):2192-2197
To clarify mechanisms of folding and unfolding of proteins, many studies of thermal denaturation of proteins have been carried out at low protein concentrations because in many cases thermal denaturation accompanies a great tendency of aggregation. As small-angle x-ray scattering (SAXS) measurements are liable to use low-concentration solutions of proteins to avoid aggregation, SAXS has been regarded as very difficult to observe detailed features of thermal structural transitions such as intramolecular structural changes. By using synchrotron radiation SAXS, we have found that the presence of repulsive interparticle interaction between proteins can maintain solute particles separately to prevent further aggregation in thermal denaturation processes and that under such conditions the thermal structural transition of hen egg-white lysozyme (HEWL) holds high reversibility even at 5% w/v HEWL below pH approximately 5. Because of the use of the high concentration of the solutions, the scattering data has enough high-statistical accuracy to discuss the thermal structural transition depending on the structural hierarchy. Thus, the tertiary structural change of HEWL starts from mostly the onset temperature determined by the differential scanning calorimetry measurement, which accompanies a large heat absorption, whereas the intramolecular structural change, corresponding to the interdomain correlation and polypeptide chain arrangement, starts much prior to the above main transition. The present finding of the reversible thermal structural transitions at the high protein concentration is expected to enable us to analyze multiplicity of folding and unfolding processes of proteins in thermal structural transitions.  相似文献   

14.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

15.
It is known that denaturation of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in low concentrations of GuHCl, around 0.5 M, at 25 degrees C, leads first to a burst phase drop of activity, followed by slow unfolding with further loss of enzyme activity and aggregation. However, GAPDH at higher concentrations does not increase the aggregation in the slow phase as would be expected but decreases both the inactivation and aggregation of the enzyme instead. It seems that GAPDH at high concentrations protects the enzyme against GuHCl-denaturation. This protection is not a general effect of GuHCl binding by increased protein concentration but specific for GAPDH, as either bovine serum albumin or alpha-lactalbumin does not show any protection at similar concentrations. It is proposed that dissociation of tetrameric GAPDH into dimers in the early phase of denaturation in dilute GuHCl is reversible and further unfolding of the dimer to an aggregation prone species is irreversible and rate-limiting for the unfolding process. High concentrations of the enzyme shift the equilibrium towards the tetramer thus decrease the aggregation of GAPDH in dilute GuHCl.  相似文献   

16.
The crystal structure of the extracellular domain (ECD) of the pentameric ligand-gated ion-channel from Gloeobacter violaceus (GLIC) was solved at neutral pH at 2.3 Å resolution in two crystal forms, showing a surprising hexameric quaternary structure with a 6-fold axis replacing the expected 5-fold axis. While each subunit retains the usual β-sandwich immunoglobulin-like fold, small deviations from the whole GLIC structure indicate zones of differential flexibility. The changes in interface between two adjacent subunits in the pentamer and the hexamer can be described in a downward translation by one inter-strand distance and a global rotation of the second subunit, using the first one for superposition. While global characteristics of the interface, such as the buried accessible surface area, do not change very much, most of the atom-atom interactions are rearranged. It thus appears that the transmembrane domain is necessary for the proper oligomeric assembly of GLIC and that there is an intrinsic plasticity or polymorphism in possible subunit-subunit interfaces at the ECD level, the latter behaving as a monomer in solution. Possible functional implications of these novel structural data are discussed in the context of the allosteric transition of this family of proteins. In addition, we propose a novel way to quantify elastic energy stored in the interface between subunits, which indicates a tenser interface for the open form than for the closed form (rest state). The hexameric or pentameric forms of the ECD have a similar negative curvature in their subunit-subunit interface, while acetylcholine binding proteins have a smaller and positive curvature that increases from the apo to the holo form.  相似文献   

17.
J L Cleland  D I Wang 《Biochemistry》1990,29(50):11072-11078
Bovine carbonic anhydrase B (CAB) is chosen as the model protein to study the phenomenon of protein aggregation, which often occurs during the refolding process. Refolding of CAB from 5 M GuHCl has been observed by quasi-elastic light scattering (QLS), which confirms the formation of a molten globular protein structure as reported previously [Semisotnov, G. V., Rodionova, N. A., Kutyshenko, V. P., Ebert, B., Blanck, J., & Ptitsyn, O. B. (1987) FEBS Lett. 224, 9-13]. QLS analysis reveals the formation of multimeric species prior to precipitation. Activity and cross-linking studies have confirmed the presence of inactive multimeric protein species. The dimer formation has been determined to be the initiating step in the aggregation of CAB during refolding. Activity studies have indicated that the first intermediate observed in the refolding pathway of CAB aggregates to form the inactive dimer. The rate of formation of the dimer has a stoichiometric dependence on the final protein concentration. The dimer formation rate is a function of the final guanidine hydrochloride (GuHCl) concentration to the inverse 6.7 power, which correlates well with the binding of GuHCl to the native protein in 0.60-0.80 M GuHCl. These rate dependencies require the refolding of CAB to be performed at high GuHCl concentrations (1 M GuHCl) and low protein concentrations (less than 1 mg/mL) to avoid the formation of aggregates. Alternatively, refolding can be performed by allowing the first intermediate to form the second intermediate prior to further dilution or dialysis. The aggregation of a hydrophobic first intermediate species is likely to be common to the refolding of other molten globular proteins.  相似文献   

18.
19.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV–vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60 °C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80 °C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50 kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90 °C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

20.
Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号