首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal Na(+)-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1, also called EAAT3), has been implicated in the control of synaptic spillover of glutamate, synaptic plasticity, and the import of cysteine for neuronal synthesis of glutathione. EAAC1 protein is observed in both perisynaptic regions of the synapse and in neuronal cell bodies. Although amino acid residues in the carboxyl terminal tail have been implicated in the dendritic targeting of EAAC1 protein, it is not known if mRNA for EAAC1 may also be targeted to dendrites. Sorting of mRNA to specific cellular domains provides a mechanism by which signals can rapidly increase translation in a local environment; this form of regulated translation has been linked to diverse biological phenomena ranging from establishment of polarity during embryogenesis to synapse development and synaptic plasticity. In the present study, EAAC1 mRNA sequences were amplified from dendritic samples that were mechanically harvested from low-density hippocampal neuronal cultures. In parallel analyses, mRNA for histone deacetylase 2 (HDAC-2) and glial fibrillary acidic protein (GFAP) was not detected, suggesting that these samples are not contaminated with cell body or glial mRNAs. EAAC1 mRNA also co-localized with Map2a (a marker of dendrites) but not Tau1 (a marker of axons) in hippocampal neuronal cultures by in situ hybridization. In control rats, EAAC1 mRNA was observed in soma and proximal dendrites of hippocampal pyramidal neurons. Following pilocarpine- or kainate-induced seizures, EAAC1 mRNA was present in CA1 pyramidal cell dendrites up to 200μm from the soma. These studies provide the first evidence that EAAC1 mRNA localizes to dendrites and suggest that dendritic targeting of EAAC1 mRNA is increased by seizure activity and may be regulated by neuronal activity/depolarization.  相似文献   

2.
Group I metabotropic glutamate receptors (mGluRs) have been demonstrated to play a role in synaptic plasticity via a rapamycin-sensitive mRNA translation signaling pathway. Various growth factors can stimulate this pathway, leading to the phosphorylation and activation of mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that modulates the activity of several translation regulatory factors, such as p70S6 kinase. However, little is known about the cellular and molecular mechanisms that bring the plastic changes of synaptic transmission after stimulation of group I mGluRs. Here, we investigated the role of the mTOR-p70S6K and the ERK1/2-p70S6K pathways in rat striatal and hippocampal synaptoneurosomes after group I mGluR stimulation. Our findings show that (S)-3,5-dihydroxyphenylglycine (DHPG) increases significantly the activation of mTOR and p70S6K (Thr389, controlled by mTOR) in both brain areas. The mTOR activation is dose-dependent and requires the stimulation of mGluR1 subtype receptors as for the p70S6K activation observed in striatum and hippocampus. In addition, the p70S6K (Thr421/Ser424) activation via the ERK1/2 activation is increased and involved also mGluR1 receptors. These results demonstrate that group I mGluRs are coupled to mTOR-p70S6K and ERK1/2-p70S6K pathways in striatal and hippocampal synaptoneurosomes. The translational factor p70S6K could be involved in the group I mGluRs-modulated synaptic efficacy.  相似文献   

3.
Activation of glycogen synthase kinase 3beta (Gsk3beta) has been shown to be a key component in signaling pathways that underlie neurodegeneration and neurodegenerative disease. Conversely, inactivation of Gsk3beta by phosphoinositide 3-kinase (PI3K)/Akt is an important neuroprotective mechanism. Previous studies have shown that agonist activation of group I metabotropic glutamate receptors (mGluRs) can increase neuronal survival and prevent apoptosis. However, little is known about the signaling pathways that couple mGluR5 to neuroprotection. In this report, we investigated whether activation of the PI3K/Akt/Gsk3beta pathway, which has been shown to have an important neuroprotective mechanism, is required for mGluR5 activation mediated neuroprotection against beta-amyloid. We found that brief incubations of mouse hippocampal slices with (R,S)-3,5-dihydroxyphenylglycine (DHPG) resulted in increased phosphorylation of Akt and Gsk3beta. The PI3K inhibitors, LY294002 and wortmannin, blocked the DHPG-induced increased phosphorylation of Akt and Gsk3beta. Similar results were observed in rat primary hippocampal cultures. Finally, we found that the PI3K inhibitor LY294002 can block (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) mediated neuroprotection against beta-amyloid. Thus, these findings suggest that mGluR5 can modulate the PI3K/Akt/Gsk3beta pathway in the hippocampus, and that modulation of this signaling pathway can reverse beta-amyloid-induced neuronal toxicity.  相似文献   

4.
The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) elicited two phases of synchronized neuronal (epileptiform) discharges in hippocampal slices: an initial phase of short duration discharges followed by a phase of prolonged discharges. We assessed the involvement of transient receptor potential canonical (TRPC) channels in these responses. Pre-treatment of hippocampal slices with TRPC channel blockers, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF96365) or 2-aminoethoxydiphenyl borate, did not affect the short epileptiform discharges but blocked the prolonged epileptiform discharges. SKF96365 suppressed ongoing DHPG-induced prolonged epileptiform discharges. Western blot analysis showed that the total TRPC4 or TRPC5 proteins in hippocampal slices were unchanged following DHPG. DHPG increased TRPC4 and TRPC5 in the cytoplasmic compartment and decreased these proteins in the plasma membrane. Translocation of TRPC4 and TRPC5 was suppressed when the epileptiform discharges were blocked by ionotropic glutamate receptor blockers. Translocation of TRPC4 and TRPC5 was also prevented in slices from phospholipase C (PLC) beta1 knockout mice, even when synchronized discharges were elicited by the convulsant 4-aminopyridine. The results suggest that TRPC channels are involved in generating DHPG-induced prolonged epileptiform discharges. This function of TRPC channels is associated with a neuronal activity- and PLCbeta1-dependent translocation of TRPC4 and TRPC5 proteins from the plasmalemma to the cytoplasmic compartment.  相似文献   

5.
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.  相似文献   

6.
Abstract: The metabotropic glutamate receptor (mGluR) agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (ACPD) potentiated the accumulation of cyclic AMP induced by either β-adrenergic receptor stimulation (isoproterenol) or direct activation of adenylyl cyclase (AC) with forskolin in rat cerebral cortical astrocytes grown in a defined medium. In contrast, ACPD inhibits the cyclic AMP response in astrocytes cultured in a serum-containing medium. Pharmacological characterization indicated that a group I mGluR, of which only mGluR5 is detectable in these cells, is involved in the potentiation of cyclic AMP accumulation. Potentiation was elicited by mGluR I agonists [e.g., ( R,S )-3,5-dihydroxyphenylglycine (DHPG)], but not by mGluR II or III agonists; it was pertussis toxin resistant and abolished by procedures suppressing mGluR5 function (phorbol ester pretreatment or DHPG-induced receptor down-regulation). Nevertheless, it appears that products generated through the mGluR5 transduction pathway, such as elevated [Ca2+]i or activated protein kinase C (PKC), are not involved in the potentiation as it was not influenced by either the intracellular calcium chelator BAPTA-AM or the PKC inhibitor Ro 31-8220. An inhibitor of phospholipase C, U-73122, markedly attenuated mGluR5-activated phosphoinositide hydrolysis but did not significantly affect the DHPG potentiation of the cyclic AMP response. A mechanism is proposed in which the potentiating effect on AC could be mediated by free βγ complex that is liberated after the agonist-bound mGluR5 interacts with its coupled G protein.  相似文献   

7.
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.  相似文献   

8.
Excitatory amino acid carrier 1 (EAAC1 also called EAAT3) is a Na+-dependent glutamate transporter expressed by both glutamatergic and GABAergic neurons. It provides precursors for the syntheses of glutathione and GABA and contributes to the clearance of synaptically released glutamate. Mice deleted of EAAC1 are more susceptible to neurodegeneration in models of ischemia, Parkinson’s disease, and aging. Antisense knock-down of EAAC1 causes an absence seizure-like phenotype. Additionally, EAAC1 expression increases after chemonvulsant-induced seizures in rodent models and in tissue specimens from patients with refractory epilepsy. The goal of the present study was to determine if the absence of EAAC1 affects the sensitivity of mice to seizure-induced cell death. A chemoconvulsant dose of pilocarpine was administered to EAAC1−/− mice and to wild-type controls. Although EAAC1−/− mice experienced increased latency to seizure onset, no significant differences in behavioral seizure severity or mortality were observed. We examined EAAC1 immunofluorescence 24 h after pilocarpine administration and confirmed that pilocarpine causes an increase in EAAC1 protein. Forty-eight hours after induction of seizures, cell death was measured in hippocampus and in cortex using Fluoro-Jade C. Surprisingly, there was ∼2-fold more cell death in area CA1 of wild-type mice than in the corresponding regions of the EAAC1−/− mice. Together, these studies indicate that absence of EAAC1 results in either a decrease in pilocarpine-induced seizures that is not detectable by behavioral criteria (surprising, since EAAC1 provides glutamate for GABA synthesis), or that the absence of EAAC1 results in less pilocarpine/seizure-induced cell death, possible explanations as discussed.  相似文献   

9.
Neuronal dendrites, together with dendritic spines, exhibit enormously diverse structure. Selective targeting and local translation of mRNAs in dendritic spines have been implicated in synapse remodeling or synaptic plasticity. The mechanism of mRNA transport to the postsynaptic site is a fundamental question in local dendritic translation. TLS (translocated in liposarcoma), previously identified as a component of hnRNP complexes, unexpectedly showed somatodendritic localization in mature hippocampal pyramidal neurons. In the present study, TLS was translocated to dendrites and was recruited to dendrites not only via microtubules but also via actin filaments. In mature hippocampal pyramidal neurons, TLS accumulated in the spines at excitatory postsynapses upon mGluR5 activation, which was accompanied by an increased RNA content in dendrites. Consistent with the in vitro studies, TLS-null hippocampal pyramidal neurons exhibited abnormal spine morphology and lower spine density. Our results indicate that TLS participates in mRNA sorting to the dendritic spines induced by mGluR5 activation and regulates spine morphology to stabilize the synaptic structure.  相似文献   

10.
The existence of metabotropic glutamate receptors (mGluRs) on hippocampal noradrenergic nerve terminals and their interaction with coexisting nicotinic acetylcholine receptors (nAChRs) were investigated in superfused rat synaptosomes using [(3)H]-noradrenaline ([(3)H]-NA) release as a readout. The selective agonist of group I mGluRs, (S)-3,5-dihydroxyphenylglycine (DHPG), inactive on its own, acquired ability to release [(3)H]-NA when added together with (-)-nicotine. The effect of DHPG was prevented by 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective antagonist of mGluR5, but not by 7-(hydroxyimino)cyclopropane[b]chromen-1-carboxylate ethyl ester (CPCCOEt), selective antagonist of mGluR1. The [(3)H]-NA release evoked by (-)-nicotine plus DHPG was totally abrogated by the nAChR antagonist mecamylamine. Veratrine mimicked the permissive role of (-)-nicotine on the activation of mGluR5 mediating [(3)H]-NA release. The mGluR5-mediated component of the [(3)H]-NA release provoked by DHPG plus (-)-nicotine was blocked by xestospongin C, a selective antagonist of inositoltrisphosphate (IP(3)) receptors. It can be concluded that (i) release-enhancing mGluRs of subtype 5 exist on hippocampal noradrenergic axon terminals; (ii) activation of mGluR5 to mediate IP(3)-dependent NA release requires activation of depolarizing nAChRs coexisting on the same terminals.  相似文献   

11.
Astrocytic responses to activation of metabotropic glutamate receptors group I (mGluRs I) and alpha(1)-adrenoreceptors in cultured cells have been assessed using spectral analyzes and calcium imaging. Concentration-dependent changes were observed after stimulation with the mGluR I agonist (S)-3,5-dihydroxyphenylglycine (DHPG). These responses changed from a regular low frequency signal with sharp peaks at 1 microm to a pronounced stage of irregularity at 10 microm. After stimulation with 100 microm the signal was again homogenous in shape and regularity but occurred at a higher frequency. In contrast, the spectral properties after stimulation with the alpha(1)-adrenoreceptor agonist phenylephrine, exhibited considerable variation for all investigated concentrations. DHPG-induced increases in [Ca(2+)](i) were also associated with astroglial glutamate release, whereas no release was observed after noradrenergic stimulation. Both DHPG-mediated calcium signaling and glutamate release were inhibited by preincubation with 10 or 100 microm phenylephrine. Collectively, the present investigation provides new information about the spatial-temporal characteristics of astroglial intracellular calcium responses and demonstrates distinct differences between noradrenergic and glutamatergic receptors regarding intracellular calcium signaling and coupling to glutamate release. The noradrenergic modulation of DHPG-induced responses indicates that intracellular astroglial processes can be regulated in a bi-directional feedback loop between closely connected astrocytes and neurons in the central nervous system.  相似文献   

12.
Fos, a protein product of immediate early gene c-fos, has been used as a marker for activation of nociceptive neurons in central nervous system including spinal trigeminal nucleus (Vsp). By noxious stimulation applied to orofacial area, the expression of Fos occurred in the Vsp pars oralis (Vo), the subnucleus receiving inputs from trigeminal primary afferents that predominantly innervate intraoral receptive fields. The present study demonstrates that the in vitro activation of group I metabotropic glutamate receptors (mGluRs; mGluR1 and 5) by bath-application of their well-known agonist (S)-3,5-dihydroxyphenylglycine (DHPG) increased the number of Fos-expressing neurons in the Vo area. In addition, bath application of DHPG caused inward currents, a parameter of neuronal excitation, in the Vo neurons held at −70 mV in voltage-clamp mode of whole-cell recordings. In further experiments characterizing two phenomena, the increased Fos expression in the Vo was mediated by an additive activation of both mGluR1 and mGluR5, which required the activation of N-methyl-D-aspartate (NMDA) receptors, protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). In contrast, the inward currents were mediated only by mGluR1, but not by others. The data resulting from this in vitro study indicate that the DHPG-induced membrane depolarisation or neuronal excitation may be upstream to, or skip, the NMDA receptor, PKC and ERK pathways for the DHPG-induced Fos expression.  相似文献   

13.
Shank3/PROSAP2 gene mutations are associated with cognitive impairment ranging from mental retardation to autism. Shank3 is a large scaffold postsynaptic density protein implicated in dendritic spines and synapse formation; however, its specific functions have not been clearly demonstrated. We have used RNAi to knockdown Shank3 expression in neuronal cultures and showed that this treatment specifically reduced the synaptic expression of the metabotropic glutamate receptor 5 (mGluR5), but did not affect the expression of other major synaptic proteins. The functional consequence of Shank3 RNAi knockdown was impaired signaling via mGluR5, as shown by reduction in ERK1/2 and CREB phosphorylation induced by stimulation with (S)-3,5-dihydroxyphenylglycine (DHPG) as the agonist of mGluR5 receptors, impaired mGluR5-dependent synaptic plasticity (DHPG-induced long-term depression), and impaired mGluR5-dependent modulation of neural network activity. We also found morphological abnormalities in the structure of synapses (spine number, width, and length) and impaired glutamatergic synaptic transmission, as shown by reduction in the frequency of miniature excitatory postsynaptic currents (mEPSC). Notably, pharmacological augmentation of mGluR5 activity using 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide as the positive allosteric modulator of these receptors restored mGluR5-dependent signaling (DHPG-induced phosphorylation of ERK1/2) and normalized the frequency of mEPSCs in Shank3-knocked down neurons. These data demonstrate that a deficit in mGluR5-mediated intracellular signaling in Shank3 knockdown neurons can be compensated by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide; this raises the possibility that pharmacological augmentation of mGluR5 activity represents a possible new therapeutic approach for patients with Shank3 mutations.  相似文献   

14.
Group I metabotropic glutamate receptors (mGluR) on astrocytes have been shown to participate in cerebral vasodilation to neuronal activation in brain slices. Pharmacological stimulation of mGluR in brain slices can produce arteriolar constriction or dilation depending on the initial degree of vascular tone. Here, we examined whether pharmacological stimulation of mGluR in vivo increases cerebral blood flow. A 1-mM solution of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) superfused at 5 μl/min over the cortical surface of anesthetized rats produced a 30 ± 2% (±SE) increase in blood flow measured by laser-Doppler flowmetry after 15-20 min. The response was completely blocked by superfusion of group I mGluR antagonists and attenuated by superfusion of an epoxyeicosatrienoic acid (EET) antagonist (5 ± 4%), an EET synthesis inhibitor (11 ± 3%), and a cyclooxygenase-2 inhibitor (15 ± 3%). The peak blood flow response was not significantly affected by administration of inhibitors of cyclooxygenase-1, neuronal nitric oxide synthase, heme oxygenase, adenosine A(2B) receptors, or an inhibitor of the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE). The blood flow response gradually waned following 30-60 min of DHPG superfusion. This loss of the flow response was attenuated by a 20-HETE synthesis inhibitor and was prevented by superfusion of an inhibitor of epoxide hydrolase, which hydrolyzes EETs. These results indicate that pharmacological stimulation of mGluR in vivo increases cerebral blood flow and that the response depends on the release of EETs and a metabolite of cyclooxygenase-2. Epoxide hydrolase activity and 20-HETE synthesis limit the duration of the response to prolonged mGluR activation.  相似文献   

15.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

16.
Abstract: Activation of metabotropic glutamate receptors (mGluRs) in glia results in significant physiological effects for both the glia and the neighboring neurons; but in many cases, the mGluR subtypes and signal transduction mechanisms mediating these effects have not been determined. In this study, we report that mGluR activation in primary cultures of rat cortical glia results in tyrosine phosphorylation of several proteins, including p44/p42 mitogen-activated protein kinases, also referred to as extracellular signal-regulated kinases (ERK1/2). Incubation of glial cultures with the general mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylate and the mGluR group I-selective agonists ( RS )-3,5-dihydroxyphenylglycine (DHPG) and l -quisqualate resulted in increased tyrosine phosphorylation of ERK1/2. The group II-selective agonist (2 S ,2' R ,3' R )-2-(2',3'-dicarboxycyclopropyl)glycine and group III-selective agonist l (+)-2-amino-4-phosphonobutyric acid had no effect on tyrosine phosphorylation. DHPG-induced ERK1/2 phosphorylation could be inhibited by an antagonist that acts at group I or group II mGluRs but not by antagonists for group II and group III mGluRs. Protein kinase C (PKC) activators also induced ERK1/2 phosphorylation, but the PKC inhibitor bisindolylmaleimide I did not inhibit DHPG-induced ERK1/2 phosphorylation at a concentration that inhibited the response to phorbol 12,13-dibutyrate. These data suggest that mGluR activation of ERK1/2 in cultured glia is mediated by group I mGluRs and that this effect is independent of PKC activation. Furthermore, immunoblots with antibodies against various mGluR subtypes show expression of mGluR5, but no other mGluRs in our cultures. Taken together, these results suggest that mGluR5 stimulation results in tyrosine phosphorylation of ERK1/2 and other glial proteins.  相似文献   

17.
The metabotropic glutamate receptor (mGluR) agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) is involved in several forms of hippocampal synaptic plasticity. DHPG application can induce slow-onset potentiation, a form of long-term potentiation (LTP), in the dentate gyrus and in the CA1 region in vivo. The induction of LTP correlates with increased expression levels of neuronal calcium sensor (NCS), considered as key elements for plasticity. In this study we investigated mGluR- and time-dependent changes in the expression of two different NCS proteins. Following DHPG application in vivo NCS-1 and VILIP-1 expression increased, with significant levels reached after 8 and 24h. The effect was attenuated by treatment with the group I mGluR specific antagonist S-4-carboxyphenylglycine. The immediate early gene (IEG) arg3.1/arc showed highest expression levels 2h after DHPG-treatment. Therefore, mGluRs at concentrations which induce synaptic plasticity regulate the expression of IEGs and NCS proteins in different time frames and thus contribute to late phases of synaptic plasticity.  相似文献   

18.
Glial (GLT-1 and GLAST) and neuronal (EAAC1) high-affinity transporters mediate the sodium dependent glutamate reuptake in mammalian brain. Their dysfunction leads to neuronal damage by allowing glutamate to remain in the synaptic cleft for a longer duration. The purpose of the present study is to understand their contribution to the ischemic delayed neuronal death seen in gerbil hippocampus following transient global cerebral ischemia. The protein levels of these three transporters were studied by immunoblotting as a function of reperfusion time (6 h to 7 days) following a 10 min occlusion of bilateral common carotid arteries in gerbils. In the vulnerable hippocampus, there was a significant decrease in the protein levels of GLT-1 (by 36-46%, P < 0.05; between 1 and 3 days of reperfusion) and EAAC1 (by 42-68%, P < 0.05; between 1 and 7 days of reperfusion). Histopathological evaluation showed no neuronal loss up to 2 days of reperfusion but an extensive neuronal loss (by approximately 84%, P < 0.01) at 7 days of reperfusion in the hippocampal CA1 region. The time frame of GLT-1 dysfunction (1-3 days of reperfusion) precedes the initiation of delayed neuronal death (2-3 days of reperfusion). This suggests GLT-1 dysfunction as a contributing factor for the hippocampal neuronal death following transient global cerebral ischemia. Furthermore, decreased EAAC1 levels may contribute to GABAergic dysfunction and excitatory/inhibitory imbalance following transient global ischemia.  相似文献   

19.
1. Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity. In a study of rat hippocampal brain slices, we find that a brief perfusion of a group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (DHPG), induced a robust long-term depression (DHPG-LTD) in area CA1.2. The action was accompanied by an enhancement of the paired-pulse facilitation (PPF) ratio.3. At the same time DHPG enhanced ionophoretic responses to alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), kainic acid (KA), and N-methyl-D-aspartate (NMDA) in CA1 pyramidal neurons. This was only partially reversed by washing.4. These observations indicate that DHPG exerts two opposing actions, suppression of the synaptic transmission and facilitation of postsynaptic responses. However, the presynaptic action dominates, since the net effect of monosynaptic activation is a reduction of response.5. Perfusion of DHPG reduced three calcium-dependent responses in CA3 pyramidal neurons, which are presynaptic to CA1 neurons. These are calcium spike width and amplitude, after-hyperpolarization (AHP), and spike frequency adaptation (SFA).6. These results suggest that the DHPG-LTD results from modulation of the presynaptic calcium currents by group l mGluRs.  相似文献   

20.
Recent research data have shown that systemic administration of pyruvate and oxaloacetate causes an increased brain-to-blood glutamate efflux. Since increased release of glutamate during epileptic seizures can lead to excitotoxicity and neuronal cell death, we tested the hypothesis that glutamate scavenging mediated by pyruvate and oxaloacetate systemic administration could have a neuroprotective effect in rats subjected to status epilepticus (SE). SE was induced by a single dose of pilocarpine (350mg/kgi.p.). Thirty minutes after SE onset, a single dose of pyruvate (250mg/kgi.p.), oxaloacetate (1.4mg/kgi.p.), or both substances was administrated. Acute neuronal loss in hippocampal regions CA1 and hilus was quantitatively determined five hours after SE onset, using the optical fractionator method for stereological cell counting. Apoptotic cascade in the hippocampus was also investigated seven days after SE using caspase-1 and -3 activity assays. SE-induced neuronal loss in CA1 was completely prevented in rats treated with pyruvate plus oxaloacetate. The SE-induced caspase-1 activation was significantly reduced when rats were treated with oxaloacetate or pyruvate plus oxaloacetate. The treatment with pyruvate and oxaloacetate caused a neuroprotective effect in rats subjected to pilocarpine-induced SE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号