首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of Escherichia coli encodes two class I ribonucleotide reductases. The first, NrdAB, is a well-studied iron-dependent enzyme that is essential for aerobic growth. The second, NrdEF, is not functional under routine conditions, and its role is obscure. Recent studies demonstrated that NrdEF can be activated in vitro by manganese as well as iron. Since iron enzymes are potential targets for hydrogen peroxide, and since the nrdHIEF operon is induced during H(2) O(2) stress, we hypothesized that H(2) O(2) might inactivate NrdAB and that NrdEF might be induced to compensate. This idea was tested using E. coli mutants that are chronically stressed by H(2) O(2) . Contrary to expectation, NrdAB remained active. Its resistance to H(2) O(2) depended upon YfaE, which helps to activate NrdB. The induction of NrdEF during H(2) O(2) stress was mediated by the inactivation of Fur, an iron-dependent repressor. This regulatory arrangement implied that NrdEF has a physiological role during periods of iron starvation. Indeed, NrdEF supported cell replication in iron-depleted cells. Iron bound to NrdF when it was expressed in iron-rich cells, but NrdEF was functional only in cells that were both iron-depleted and manganese-rich. Thus NrdEF supports DNA replication when iron is unavailable to activate the housekeeping NrdAB enzyme.  相似文献   

2.
Ribonucleotide reductase (RNR) is central to de novo synthesis of deoxyribonucleotides and essential for all living cells. Three classes have been described; class I is oxygen dependent and represented by two subclasses, Ia (NrdAB) and Ib (NrdEF); class II (NrdJ) is indifferent to oxygen; and class III (NrdDG) is oxygen sensitive. More than one class can be found in an organism, reflecting the oxygen status of its environment. We have investigated, by using PCR and Southern blot, the occurrence of the different classes among species of the γ-Proteobacteria. Class III are present in all species tested, but the presence of the other classes varies. Some species contain one unique additional enzyme, class Ia, Ib, or II, whereas others contain two additional enzymes, class Ia and Ib, or class Ia and II. Received: 8 May 2000 / Accepted: 13 June 2000  相似文献   

3.
Poly(A) polymerase [polyadenylate nucleotidyltransferase, EC 2.7.7.19] was extracted from Tetrahymena pyriformis. The enzyme was demonstrated to be present in three forms by column chromatography on DEAE-cellulose, and they were termed poly(A) polymerase Ia, Ib, and II in order of increasing affinity to the column. The properties of enzymes Ia and Ib were similar except that Ia utilizes poly(A) as a primer rather efficiently. Enzyme II differed from enzymes Ia and Ib not only in elution profile on DEAE-cellulose column chromatography but also in pH and temperature preferences, molecular weight, requirement for divalent cations, sensitivity to salts at high ionic strength, optimal primer concentration, and subcellular localization. The molecular weights of enzymes Ia and Ib measured by gel filtration were both 43,000, and that of enzyme II was 95,000. All three enzymes required Mn2+ for maximal activity; Mg2+ could replace Mn2+ in the reaction of enzyme II, but only partially. In the presence of 0.1 M ammonium sulfate the activities of enzymes Ia and Ib were both completely inhibited, whereas enzyme II still showed 42% of its original activity. These findings suggest that there are two distinct types of poly(A) polymerase in Tetrahymena pyriformis.  相似文献   

4.
5.
6.
7.
Bacteroides fragilis, a component of the normal intestinal flora, is an obligate anaerobe capable of long-term survival in the presence of air. Survival is attributed to an elaborate oxidative stress response that controls the induction of more than 28 peptides, but there is limited knowledge concerning the identities of these peptides. In this report, RNA fingerprinting by arbitrarily primed PCR identified five new genes whose expression increased following exposure to O2. Nucleotide sequence analysis of the cloned genes indicated that they encoded an outer membrane protein, an aspartate decarboxylase, an efflux pump, heat shock protein HtpG, and an NrdA ortholog constituting the large subunit of a class Ia ribonucleotide reductase (RRase). Attention was focused on the nrdA gene since class I RRases are obligate aerobic enzymes catalyzing the reduction of ribonucleoside 5'-diphosphates by a mechanism that requires molecular oxygen for activity. Sequence analysis of the nrd locus showed that two genes, nrdA and nrdB, are located in the same orientation in a 4.5-kb region. Northern hybridization and primer extension experiments confirmed induction of the genes by O2 and suggested they are an operon. The B. fragilis nrdA and nrdB genes were overexpressed in Escherichia coli, and CDP reductase assays confirmed that they encoded an active enzyme. The enzyme activity was inhibited by hydroxyurea, and ATP was shown to be a positive effector of CDP reductase activity, while dATP was an inhibitor, indicating that the enzyme was a class Ia RRase. A nrdA mutant was viable under anaerobic conditions but had decreased survival following exposure to O2, and it could not rapidly resume growth after O2 treatment. The results presented indicate that during aerobic conditions B. fragilis NrdAB may have a role in maintaining deoxyribonucleotide pools for DNA repair and growth recovery.  相似文献   

8.
Background: The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. The 10 class I synthetases are considered to have in common the catalytic domain structure based on the Rossmann fold, which is totally different from the class II catalytic domain structure. The class I synthetases are further divided into three subclasses, a, b and c, according to sequence homology. No conserved structural features for tRNA recognition by class I synthetases have been established. Results: We determined the crystal structure of the class Ia methionyl-tRNA synthetase (MetRS) at 2.0 A resolution, using MetRS from an extreme thermophile, Thermus thermophilus HB8. The T. thermophilus MetRS structure is in full agreement with the biochemical and genetic data from Escherichia coli MetRS. The conserved 'anticodon-binding' residues are spatially clustered on an alpha-helix-bundle domain. The Rossmann-fold and anticodon-binding domains are connected by a beta-alpha-alpha-beta-alpha topology ('SC fold') domain that contains the class I specific KMSKS motif. Conclusions: The alpha-helix-bundle domain identified in the MetRS structure is the signature of the class Ia enzymes, as it was also identified in the class Ia structures of the isoleucyl- and arginyl-tRNA synthetases. The beta-alpha-alpha-beta-alpha topology domain, which can now be identified in all known structures of the class Ia and Ib synthetases, is likely to dock with the inner side of the L-shaped tRNA, thereby positioning the anticodon stem.  相似文献   

9.
10.
11.
Two Ca(2+)-calmodulin (CaM)-dependent protein kinases were purified from rat brain using as substrate a synthetic peptide based on site 1 (site 1 peptide) of the synaptic vesicle-associated protein, synapsin I. One of the purified enzymes was an approximately 89% pure protein of M(r) = 43,000 which bound CaM in a Ca(2+)-dependent fashion. The other purified enzyme was an apparently homogenous protein of M(r) = 39,000 accompanied by a small amount of a M(r) = 37,000 form which may represent a proteolytic product of the 39-kDa enzyme. The 39-kDa protein bound CaM in a Ca(2+)-dependent fashion. Gel filtration analysis indicated that both enzymes are monomers. The 43- and 39-kDa enzymes are named Ca(2+)-CaM-dependent protein kinases Ia and Ib (CaM kinases Ia, Ib), respectively. The specific activities of CaM kinases Ia and Ib were similar (5-8 mumol/min/mg protein). CaM kinase Ia (but not CaM kinase Ib) activity was enhanced by addition of a CaM-Sepharose column wash (non-binding) fraction suggesting the existence of an "activator" of CaM kinase Ia. Both kinases phosphorylated exogenous substrates (site 1 peptide and synapsin I) in a Ca(2+)-CaM-dependent fashion and both kinases underwent autophosphorylation. CaM kinase Ia autophosphorylation was Ca(2+)-CaM-dependent and occurred exclusively on threonine while CaM kinase Ib autophosphorylation showed Ca(2+)-CaM independence and occurred on both serine and threonine. Proteolytic digestion of autophosphorylated CaM kinases Ia and Ib yielded phosphopeptides of differing M(r). These characteristics, as well as enzymatic and regulatory properties (DeRemer, M. F., Saeli, R. J. Brautigen, D. L., and Edelman, A. M. (1992) J. Biol. Chem. 267, 13466-13471), indicate that CaM kinases Ia and Ib are distinct and possibly previously unrecognized enzymes.  相似文献   

12.
Three separate classes of ribonucleotide reductases exist in nature. They differ widely in protein structure. Class I enzymes are found in aerobic bacteria and eukaryotes; class II enzymes are found in aerobic and anaerobic bacteria; class III enzymes are found in strict and facultative anaerobic bacteria. Usually, but not always, one organism contains only one or two (in facultative anaerobes) classes. Surprisingly, the genomic sequence of Pseudomonas aeruginosa contains sequences for each of the three classes. Here, we show by DNA hybridization that other species of Pseudomonas also contain the genes for three classes. Extracts from P. aeruginosa and P. stutzeri grown aerobically or microaerobically contain active class I and II enzymes, whereas we could not demonstrate class III activity. Unexpectedly, class I activity increased greatly during microaerobic conditions. The enzymes were separated, and the large proteins of the class I enzymes were obtained in close to homogeneous form. The catalytic properties of all enzymes are similar to those of other bacterial reductases. However, the Pseudomonas class I reductases required the continuous presence of oxygen during catalysis, unlike the corresponding Escherichia coli enzyme but similar to the mouse enzyme. In similarity searches, the amino acid sequence of the class I enzyme of P. aeruginosa was more related to that of eukaryotes than to that of E. coli or other proteobacteria, with the large protein showing 42% identity to that of the mouse, suggesting the possibility of a horizontal transfer of the gene. The results raise many questions concerning the physiological function and evolution of the three classes in Pseudomonas species.  相似文献   

13.
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides, the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of deoxyribonucleotides during the cell cycle (29). Three main classes of RNRs are known. Class I RNRs are oxygen-dependent enzymes, class II RNRs are oxygen-independent enzymes, and class III RNRs are oxygen-sensitive enzymes. Class I RNRs are divided into two subclasses, subclasses Ia and Ib.Staphylococcus aureus is a Gram-positive facultative aerobe and a major human pathogen (24). S. aureus contains class Ib and class III RNRs, which are essential for aerobic and anaerobic growth, respectively (26). The class Ib NrdEF RNR is encoded by the nrdE and nrdF genes: NrdE contains the substrate binding and allosteric binding sites, and NrdF contains the catalytic site for ribonucleotide reduction. The S. aureus nrdEF genes form an operon containing a third gene, nrdI, the product of which, NrdI, is a flavodoxin (5, 33). Many other bacteria such as Escherichia coli (16), Lactobacillus lactis (17), and Mycobacterium and Corynebacterium spp. possess class Ib RNR operons that contain a fourth gene, nrdH (30, 44, 50), whose product, NrdH, is a thiol-disulfide redoxin (16, 17, 40, 43, 49). More-complex situations are found for some bacteria, where the class Ib RNR operon may be duplicated and one or more of the nrdI and nrdH genes may be missing or located in another part of the chromosome (29).NrdH proteins are glutaredoxin-like protein disulfide oxidoreductases that alter the redox state of target proteins via the reversible oxidation of their active-site dithiol proteins. NrdH proteins function with high specificity as electron donors for class I RNRs (9, 16-18). They are widespread in bacteria, particularly in those bacteria that lack glutathione (GSH), where they function as a hydrogen donor for the class Ib RNR (12, 16, 17). In E. coli, which possesses class Ia and class Ib RNRs, NrdH functions in vivo as the primary electron donor for the class Ib RNR, whereas thioredoxin or glutaredoxin is used by the class Ia NrdAB RNR (12, 17). NrdH redoxins contain a conserved CXXC motif, have a low redox potential, and can reduce insulin disulfides. NrdH proteins possess an amino acid sequence similar to that of glutaredoxins but behave functionally more like thioredoxins. NrdH proteins are reduced by thioredoxin reductase but not by GSH and lack those residues in glutaredoxin that bind GSH and the GSH binding cleft (39, 40). The structures of the E. coli and Corynebacterium ammoniagenes NrdH redoxins reveal the presence of a wide hydrophobic pocket at the surface, like that in thioredoxin, that is presumed to be involved in binding to thioredoxin reductase (39, 40). NrdI proteins are flavodoxin proteins that function as electron donors for class Ib RNRs and are involved in the maintenance of the NrdF diferric tyrosyl radical (5, 33). In Streptococcus pyogenes, NrdI is essential for the activity of the NrdHEF system in a heterologous E. coli in vivo complementation assay (33). Class Ib RNRs are proposed to depend on two specific electron donors, NrdH, which provides reducing power to the NrdE subunit, and NrdI, which supplies electrons to the NrdF subunit (33).In this report we identify an open reading frame (ORF) in S. aureus encoding an NrdH-like protein with partial sequence relatedness to the E. coli, Salmonella enterica serovar Typhimurium, L. lactis, and C. ammoniagenes NrdH proteins. In contrast to these bacteria, the S. aureus nrdH gene does not form part of the class Ib RNR operon. The S. aureus NrdH protein differs in its structure from the canonical NrdH in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that in vitro, S. aureus NrdH reduces protein disulfides and is an electron donor for the homologous class Ib NrdEF ribonucleotide reductase.  相似文献   

14.
15.
DEAE-cellulose chromatography, with or without dithiothreitol and over a pH range of 6.0 to 8.5, resolved two phosphodiesterase activities (peaks I and II) from the soluble fraction of pig coronary arteries. The activity of peak I was increased by calmodulin (3-7-fold), whereas that of peak II was not. Chromatography of peak I on Biol-Gel A-0.5 m columns resolved two peaks of phosphodiesterase activity (peaks Ia and Ib). Peak Ia was eluted in the presence or absence of 0.1 M KCl and was relatively insensitive to calmodulin. Peak Ib was eluted only in the presence of KCl and was sensitive to calmodulin. The substrate specificity and kinetic behavior were the same for peaks I, Ia, and Ib. Repeated gel chromatography of either peak Ia or Ib, under appropriate conditions, yielded a mixture of peaks Ia and Ib. Peak Ia appears to be a reversible aggregate of peak Ib. Gel chromatography of peak II resolved only one phosphodiesterase activity, which was eluted without KCl, was highly specific for cyclic AMP, was not sensitive to calmodulin and migrated differently on the gel column than either peak Ia or Ib. Sucrose density gradient centrifugation of the soluble fraction from pig coronary arteries in the presence or absence of dithiothreitol resolved two peaks of phosphodiesterase activity (6.6 S and 3.6 S) which were similar to peaks I and II separated by DEAE-cellulose chromatography with regard to their substrate specificity and their sensitivity to calmodulin. Upon recentrifugation, each of the two peaks of phosphodiesterase activity gave a single peak of activity which migrated with the same S value as did its parent. These results indicate that the two major forms of phosphodiesterase of pig coronary arteries, which are representative of those found in many tissues, are not interconvertible in cell-free systems.  相似文献   

16.
The chemical and catalytic properties of potato phosphoglucomutase [EC 2.7.5.1] were studied using various enzyme species (Peaks Ia, Ib, Ic, and II; Takamiya, S. & Fukui, T. (1978) Plant Cell Physiol. 19, 319--328). The molecular weights of the species are all approximately 60,000. No indication of the presence of subunit structure was obtained under various conditions. The amino acid composition of Peak Ia is generally similar to those of the enzymes from other sources, though it has some peculiarities. The Peak Ia and Peak II enzymes both absolutely require alpha-D-glucose 1,6-bisphosphate and Mg2+ for activity, and appear to have a "ping-pong" mechanism. A low concentration of Be2+ inhibits their action, the inhibition being retarded either by Mg2 or EDTA. Although the inhibition patterns by various metabolites, are similar for Peaks Ia and II, they differ in their kinetic parameters and optimal pH values.  相似文献   

17.
During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074.  相似文献   

18.
Three separate classes of ribonucleotide reductases are known, each with a distinct protein structure. One common feature of all enzymes is that a single protein generates each of the four deoxyribonucleotides. Class I and III enzymes contain an allosteric substrate specificity site capable of binding effectors (ATP or various deoxyribonucleoside triphosphates) that direct enzyme specificity. Some (but not all) enzymes contain a second allosteric site that binds only ATP or dATP. Binding of dATP to this site inhibits the activity of these enzymes. X-ray crystallography has localized the two sites within the structure of the Escherichia coli class I enzyme and identified effector-binding amino acids. Here, we have studied the regulation of three class II enzymes, one from the archaebacterium Thermoplasma acidophilum and two from eubacteria (Lactobacillus leichmannii and Thermotoga maritima). Each enzyme has an allosteric site that binds ATP or various deoxyribonucleoside triphosphates and that regulates its substrate specificity according to the same rules as for class I and III enzymes. dATP does not inhibit enzyme activity, suggesting the absence of a second active allosteric site. For the L. leichmannii and T. maritima enzymes, binding experiments also indicate the presence of only one allosteric site. Their primary sequences suggest that these enzymes lack the structural requirements for a second site. In contrast, the T. acidophilum enzyme binds dATP at two separate sites, and its sequence contains putative effector-binding amino acids for a second site. The presence of a second site without apparent physiological function leads to the hypothesis that a functional site was present early during the evolution of ribonucleotide reductases, but that its function was lost from the T. acidophilum enzyme. The other two B12 enzymes lost not only the function, but also the structural basis for the site. Also a large subgroup (Ib) of class I enzymes, but none of the investigated class III enzymes, has lost this site. This is further indirect evidence that class II and I enzymes may have arisen by divergent evolution from class III enzymes.  相似文献   

19.
Peptides corresponding to residues 65-79 of human lymphocyte antigen class II sequence (DQA*03011) are cell-permeable and at high concentrations block activation of protein kinase B/Akt and p70-S6 kinase in T-cells, effects attributed to inhibition of phosphoinositide (PI) 3-kinase activity. To understand the molecular basis of this, we analyzed the effect this peptide had on activity of class I PI 3-kinases. Although there was no effect on the activity of class Ib PI 3-kinase or on the protein kinase activity of class I PI 3-kinases, there was a biphasic effect on lipid kinase activity of the class Ia enzymes. There was an inhibition of activity at higher peptide concentrations because of a formation of insoluble complexes between peptide and enzyme. Conversely, at lower peptide concentrations there was a profound activation of PI 3-kinase activity of class Ia PI 3-kinases. Studies of peptide variants revealed that all active peptides conform to heptad repeat motifs characteristic of coiled-coil helices. Surface plasmon resonance studies confirmed direct sequence-specific binding of active peptide to the p85alpha adapter subunit of class Ia PI 3-kinase. Active peptides also activated protein kinase B and extracellular signal-regulated kinase (ERK) in vivo in a wortmannin-sensitive manner while reducing recoverable cellular p85 levels. These results indicate that the human lymphocyte antigen class II-derived peptides regulate PI 3-kinase by direct interaction, probably via the coiled-coil domain. These peptides define a novel mechanism of regulating PI 3-kinase and will provide a useful tool for specifically dissecting the function of class Ia PI 3-kinase in cells and for probing structure-function relationships in the class Ia PI 3-kinase heterodimers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号