首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   

2.
Keratinocytes, one of major cell types in the skin, can be induced by TNF-α and IFN-γ to express thymus- and activation-regulated chemokine (TARC/CCL17), which is considered to be a pivotal mediator in the inflammatory responses during the development of inflammatory skin diseases, such as atopic dermatitis (AD). In this study, we examined the effect of 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG), isolated from the barks of Juglans mandshurica, on TNF-α/IFN-γ induced CCL17 expression in the human keratinocyte cell line HaCaT. Pretreatment of HaCaT cells with PGG suppressed TNF-α/IFN-γ-induced protein and mRNA expression of CCL17. PGG significantly inhibited TNF-α/IFN-γ-induced NF-κB activation as well as STAT1 activation. Furthermore, pretreatment with PGG resulted in significant reduction in expression of CXCL9, 10, and 11 in the HaCaT cells treated with IFN-γ. These results suggest that PGG may exert anti-inflammatory responses by suppressing TNF-α and/or IFN-γ-induced activation of NF-κB and STAT1 in the keratinocytes and might be a useful tool in therapy of skin inflammatory diseases.  相似文献   

3.
4.
Casuarinin is a naturally occurring tannin that is isolated from the leaves of Hippophae rhamnoides. It has been shown to have anti-oxidant, anti-cancer, anti-viral, and anti-inflammatory activities. The aim of this study was to investigate the possible mechanism by which casuarinin inhibits TNF-α/IFN-γ-induced Th2 chemokines expression in the human keratinocytes cell line HaCaT. We found that casuarinin suppressed TNF-α/IFN-γ-induced expression of TARC and MDC mRNA and protein in HaCaT cells. Casuarinin significantly inhibited TNF-α/IFN-γ-induced activation of NF-κB, STAT1, and p38 MAPK. Furthermore, we observed that p38 MAPK contributes to inhibition of TNF-α/IFN-γ-induced TARC and MDC production by blocking NF-κB and STAT1 activation in HaCaT cells. Taken together, these results suggest that casuarinin may exert anti-inflammatory responses by suppressing TNF-α/IFN-γ-induced expression of TARC and MDC via blockage of p38 MAPK activation and subsequent activation of NF-κB and STAT1. We propose that it could therefore be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

5.
CC chemokine ligand (CCL)17 and CCL27 produced by epidermal keratinocytes (KCs) recruit CC chemokine receptor (CCR)4 and CCR10 expressing T cells into the skin, respectively, resulting in enhanced skin inflammation. However, CCR4/CCL17 and CCR10/CCL27 interactions in epidermal KCs have not been investigated. The purpose of this study was to evaluate the role of the CCR4/CCL17 and CCR10/CCL27 loops in cutaneous immune reaction. Normal human KCs (NHKs) and HaCaT KCs expressed both CCR4 and CCR10 at mRNA and protein levels. CCR4 ligand CCL17 but not CCR10 ligand CCL27 induced production of IL-12 p40, granulocyte/monocyte colony-stimulating factor (GM-CSF) and nerve growth factor (NGF) by KCs. Both CCL17 and CCL27 induced migration of KCs in Boyden chamber assay and wound scratch assay. This study revealed that CCR4 and CCR10 are expressed on epidermal KCs and that both are functional in terms of skin cytokine production and/or migration to their ligand CCL17 and CCL27, respectively. Thus this study provided new insight into chemokine/chemokine receptors of KCs.  相似文献   

6.
Until now, no data are present in literature about the prototype Th1 chemokine (C-X-C motif) ligand 10 (CXCL10) in anaplastic thyroid cancer (ATC). This study aimed to test in "primary human ATC cells" (ANA) vs "normal thyroid follicular cells" (TFC): (a) CXCL10 secretion basally and after interferon (IFN)-γ and/or tumor necrosis factor (TNF)-α stimulation; (b) peroxisome proliferator-activated receptor (PPAR)-γ activation by thiazolidinediones, rosiglitazone or pioglitazone, on CXCL10 secretion, on proliferation and apoptosis in ANA. We demonstrate that: (a) ANA, but not TFC, produced basally CXCL10, and did so in half of cases; (b) IFN-γ stimulated dose-dependently CXCL10, in ANA and TFC; (c) TNF-α did not induce CXCL10 secretion, in ANA and TFC; (d) IFN-γ+TNF-α induced a synergistic but variable release of CXCL10 in the different ANA preparations, while it was more reproducible in TFC; (e) rosiglitazone action on CXCL10 in ANA was inhibitory in 2/6, stimulatory in 1/6 and nil in 3/6, whereas it was inhibitory in TFC; (f) rosiglitazone inhibition of proliferation in ANA was not associated with the effect on CXCL10; (g) nuclear factor-κB and ERK1/2 were basally activated in ANA, increased by IFN-γ+TNF-α, and rosiglitazone inhibited that activation. On the whole, the present data first show that ANA cells are able to produce CXCL10, basally and under the influence of cytokines. However, the pattern of modulation by IFN-γ, TNF-α or thiazolidinediones is extremely variable, suggesting that the intracellular pathways involved in the chemokine modulation in ATC have different types of deregulation.  相似文献   

7.
8.
IL-1 is a potent pro-inflammatory cytokine that activates intracellular signaling cascades some of which may involve IL-1 receptor associated kinase-1 (IRAK1). Psoriasis is a T cell dependent chronic inflammatory condition of the skin of unknown cause. IL-1 has been implicated in psoriasis pathology, but the mechanism has not been elucidated. Interestingly, expression of IRAK1 is elevated in psoriatic skin. To identify a potential link between IL-1, keratinocytes and T cells in skin inflammation we employed pathway-focused microarrays to evaluate IL-1 dependent gene expression in keratinocytes. Several candidate mRNAs encoding known T cell chemoattractants were identified in primary keratinocytes and the stable keratinocyte cell line HaCaT. CCL5 and CCL20 mRNA and protein levels were confirmed up-regulated by IL-1 in concentration and time-dependent manners. Furthermore IL-1 synergized with IFN-γ and TNF-α. Expression of CXCL9, CXCL10 and CXCL11 mRNAs was also increased in response to IL-1, but protein could only be detected in medium from cells treated with IFN-γ alone or in combination with IL-1. Over-expression of IRAK1 led to increased constitutive and cytokine induced production of CCL5 and CCL20. Inhibition of IRAK1 activity through RNAi or expression of a dominant negative mutant blocked production of CCL5 and CCL20 but had no effect upon the IL-1 enhancement of IFN-γ induced CXCL9, CXCL10 and CXCL11 production. In conclusion IL-1 regulates T cell targeting chemokine production in keratinocytes through IRAK1 dependent and independent pathways. These pathways may contribute to acute and chronic skin inflammation.  相似文献   

9.
《Cytokine》2015,75(2):335-338
Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). RPE cells adjacent to drusen deposits in the AMD eye are known to contain CXCL11, a chemokine involved in inflammatory cell recruitment. We investigated the CXCL11 production by the human RPE (ARPE-19) cells under inflammatory conditions and tested its response to resveratrol, a naturally occurring anti-inflammatory antioxidant. A proinflammatory cytokine mixture consisting of IFN-γ, IL-1β and TNF-α highly increased CXCL11 mRNA expression and CXCL11 protein secretion by ARPE-19 cells. Resveratrol substantially inhibited the proinflammatory cytokines-induced CXCL11 production while partially blocking nuclear factor-κB activation. This inhibitory action of resveratrol was also observed for the cytokines-induced expression of chemokines CXCL9, CCL2 and CCL5. Our results indicate that resveratrol could potentially attenuate RPE inflammatory response implicated in the pathogenesis of AMD.  相似文献   

10.
11.
Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production.  相似文献   

12.
13.
IL-32, a newly described multifunctional cytokine, has been associated with a variety of inflammatory diseases, including rheumatoid arthritis, vasculitis, and Crohn's disease. In this study, we investigated the immunomodulatory effects of IL-32γ on bone marrow-derived dendritic cell (DC)-driven Th responses and analyzed the underlying signaling events. IL-32γ-treated DCs exhibited upregulated expression of cell-surface molecules and proinflammatory cytokines associated with DC maturation and activation. In particular, IL-32γ treatment significantly increased production of IL-12 and IL-6 in DCs, which are known as Th1- and Th17-polarizing cytokines, respectively. This increased production was inhibited by the addition of specific inhibitors of the activities of phospholipase C (PLC), JNK, and NF-κB. IL-32γ treatment increased the phosphorylation of JNK and the degradation of both IκBα and IκBβ in DCs, as well as NF-κB binding activity to the κB site. The PLC inhibitor suppressed NF-κB DNA binding activity and JNK phosphorylation increased by IL-32γ treatment, thereby indicating that IL-32γ induced IL-12 and IL-6 production in DCs via a PLC/JNK/NF-κB signaling pathway. Importantly, IL-32γ-stimulated DCs significantly induced both Th1 and Th17 responses when cocultured with CD4(+) T cells. The addition of a neutralizing anti-IL-12 mAb abolished the secretion of IFN-γ in a dose-dependent manner; additionally, the blockage of IL-1β and IL-6, but not of IL-21 or IL-23p19, profoundly inhibited IL-32γ-induced IL-17 production. These results demonstrated that IL-32γ could effectively induce the maturation and activation of immature DCs, leading to enhanced Th1 and Th17 responses as the result of increased IL-12 and IL-6 production in DCs.  相似文献   

14.
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.  相似文献   

15.
In neurodegenerative disorders, activated glial cells overproduce nitric oxide (NO), which causes neurotoxicity. Inducible NO synthase (iNOS) is a potential therapeutic target in neurodegenerative diseases. Here, we examined the action of fucoidan, a high-molecular-weight sulfated polysaccharide, on tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced NO production in C6 glioma cells. Fucoidan suppressed TNF-α- and IFN-γ-induced NO production and iNOS expression. In addition, fucoidan inhibited TNF-α- and IFN-γ-induced AP-1, IRF-1, JAK/STAT and p38 mitogen-activated protein kinase (MAPK) activation and induced scavenger receptor B1 (SR-B1) expression. Blocking of SR-B1 did not reverse the inhibitory effect of fucoidan on TNF-α- and IFN-γ- stimulated NO production. However, inhibition of SR-B1 expression by siRNA increased iNOS expression and p38 phosphorylation in TNF-α- and IFN-γ-stimulated C6 cells.Overall, p38 MAPK, AP-1, JAK/STAT and IRF-1 play an important role in the inhibitory effect of fucoidan on TNF-α- and IFN-γ-stimulated NO production, and intracellular SR-B1 expression may be related to the inhibition of iNOS expression by fucoidan via regulation of p38 phosphorylation. The present results also suggest that fucoidan could be a potential therapeutic agent for treating inflammatory-related neuronal injury in neurological disorders.  相似文献   

16.
The increased generation of reactive oxygen species (ROS) induces inflammation in different cell types. However, it is unclear whether ROS play an essential role in the production of thymus and activation‐regulated chemokine (TARC/CCL17) and macrophage‐derived chemokine (MDC/CCL22) in keratinocytes. Here, we investigated the function of ROS in the production of these two Th2 chemokines in interferon‐gamma (IFN‐γ)‐treated HaCaT keratinocytes. We found that IFN‐γ‐induced production of both chemokines in parallel with the increased generation of intracellular ROS. A ROS scavenger, N‐acetyl cysteine (NAC), significantly inhibited the IFN‐γ‐induced production of chemokines as well as the activation of I kappa‐B (IκB)–nuclear factor‐kappa B (NF‐κB). Inhibitors of Janus family kinases (JAKs), p38 mitogen‐activated kinase (MAPK), and NF‐κB suppressed IFN‐γ‐induced production of TARC and MDC. NF‐κB activation was inhibited by both inhibitors of JAKs and p38 MAPK. Importantly, IFN‐γ‐stimulated phosphorylation of p38 MAPK was significantly suppressed by JAKs inhibitors, but not significantly affected by NAC or L ‐buthionine sulfoximine (L‐BSO). However, IFN‐γ‐stimulated activation of IκB and NF‐κB was suppressed by NAC but enhanced by BSO. Furthermore, inhibition of p38 MAPK and JAKs did not affect ROS generation in IFN‐γ‐stimulated HaCaT cells. These results indicate that intracellular ROS and JAKs/p38 MAPK both contribute independently to IFN‐γ‐stimulated production of TARC and MDC in HaCaT keratinocytes, by increasing NF‐κB activation. J. Cell. Physiol. 226: 58–65, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Leishmania is known to elicit Th2 response that causes leishmaniasis progression; on the other hand, Th1 cytokines restricts amastigote growth and disease progression. In this study, we report the potential of two leishmanial antigens (65 and 98?kDa, in combination) which enhance strong macrophage effector functions, viz., production of respiratory burst enzymes, nitric oxide, and Th1 cytokines. The identification of antigens were done by resolving the crude soluble antigens on SDS-PAGE and eluted by reverse staining method. Further, RAW264.7 macrophages were challenged with eluted antigens, and the innate immune response was observed by detecting respiratory burst enzymes, nitric oxide (NOx), TNF-α, IFN-γ, IL-12, toll-like receptors (TLRs) gene expression, and TLR-signaling proteins. These antigens increased the production of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, NOx, TNF-α, IFN-γ, IL-12, TLR2, and p38 mitogen-activated protein kinase. These antigens also induced human peripheral blood mononuclear cells proliferation and Th1 cytokine production. This study concludes that these antigens induce innate immune response as well as have prophylactic efficacy.  相似文献   

18.
CD73-derived adenosine acts as potent inhibitor of inflammation, and regulatory T cells (Treg) have been shown to express CD73 as a novel marker. This study explored the role of endogenously formed adenosine in modulating NF-κB activity and cytokine/chemokine release from murine Treg and effector T cells (Teff) including key enzymes/purinergic receptors of extracellular ATP catabolism. Stimulating murine splenocytes and CD4(+) T cells with anti-CD3/anti-CD28 significantly upregulated activated NF-κB in CD73(-/-) T cells (wild type: 4.36 ± 0.21; CD73(-/-): 6.58 ± 0.75; n = 4; P = 0.029). This was associated with an augmented release of proinflammatory cytokines IL-2, TNF-α, and IFN-γ. Similar changes were observed with the CD73 inhibitor APCP (50 μM) on NF-κB and IFN-γ in wild-type CD4(+) T-cells. Treatment of stimulated CD4(+) T-cells with adenosine (25 μM) potently reduced IFN-γ release which is mediated by adenosine A2a receptors (A2aR). AMP (50 μM) also reduced cytokine release which was not inhibited by APCP. In Teff, A2aR activation (CGS21680) potently inhibited the release of IL-1, IL-2, IL-3, IL-4, IL-12, IL-13, IFN-γ, TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), CCL3, and CCL4. However, in Treg, CGS21680 did not alter cytokine/chemokine release. In summary, CD73-derived adenosine tonically inhibits active NF-κB in CD4(+) T-cells, thereby modulating the release of a broad spectrum of proinflammatory cytokines and chemokines. Downregulation of P2X7 and upregulation of CD73 in Treg after antigenic stimulation may be an important mechanism to maintain the ability of Treg to generate immunosuppressive adenosine.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号