首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria exhibit a wide variety of morphologies. This could simply be a consequence of an elaboration of bacterial cellular architecture akin to the famous decorative but not structurally essential Spandrels in the Basilica di San Marco in Venice that are a side-effect of an adaptation, rather than a direct product of natural selection. However, it is more likely that particular morphologies facilitate a specific function in cellular physiology. Two recent publications including one in this issue of Molecular Microbiology and another in Cell provide new insights into the molecular basis for the helical shape of the bacterium Helicobacter pylori and the role of this shape in pathogenesis. They identify a novel endopeptidase that is necessary to generate the helical shape by processing the peptidoglycan and report that catalytically inactive mutants lead to defects in colonization that appear to be independent of an effect on cellular motility. Here, we put these findings in the context of some of what is known about peptidoglycan and cell shape and suggest that the role of this endopeptidase in forming coccoid morphology may be critical for pathogenesis.  相似文献   

2.
Since the characterization of genes encoding Ser/Thr-kinases and Tyr-kinases in bacteria, in 1991 and 1997, respectively, a growing body of evidence has been reported showing the important role of these enzymes in the regulation of bacterial physiology. While most Ser/Thr-kinases share structural similarity with their eukaryotic counterparts, it seems that bacteria have developed their own Tyr-kinases to catalyze protein phosphorylation on tyrosine. Different types of Tyr-kinases have been identified in bacteria and a large number of them are similar to ATP-binding proteins with Walker motifs. These enzymes have been grouped in the same family (BY-kinases) and the crystal structures of two of them have been recently characterized. Phosphoproteome analysis suggest that BY-kinases are involved in several cellular processes and to date, the best-characterized role of BY-kinases concerns the control of extracellular polysaccharide synthesis. Knowing the role of these compounds in the virulence of bacterial pathogens, BY-kinases can be considered as promising targets to combat some diseases. Here, we review the current knowledge on BY-kinases and discuss their potential for the development of new antibiotics.  相似文献   

3.
Seidler DG  Dreier R 《IUBMB life》2008,60(11):729-733
A molecular network of extracellular matrix molecules determines the tissue architecture and accounts for mechanical properties like compressibility or stretch resistance. It is widely accepted that the elements of the cellular microenvironment are important regulators of the cellular behavior in vitro and in vivo. One large group comprising these molecules is the family of proteoglycans. Both, the core proteins and, in particular, the attached galactosaminoglycans, contribute to the regulation network as they bind a variety of signaling molecules, e.g. cytokines, chemokines, growth, and differentiation factors. We would like to emphasize specific patterns of epimerization and sulfation within the galactosaminoglycans chains, because these result in "motifs" that are responsible for the modulation of signal factor binding, release and activity. This property is crucial in physiological and pathological conditions, for example development and wound healing.  相似文献   

4.
Abscisic acid (ABA) was detected in aqueous extracts of a range of different soils, beneath a range of crops, pasture and forest species. Assuming that all the ABA is dissolved in the soil solution concentrations ranged from 0.6–2.8 nM. This is in the range which computer simulations predict is required in soils in order to prevent ABA release from the root hair zones of plant roots. The concentration of ABA in the soil solution was highest in acid soils and in soils with reduced moisture, and was lowest in moist, neutral and moderately alkaline soils. ABA in the soil solution of maize fields increased during the vegetative period. After incubation in soil for 72 h, radioactive ABA was degraded by 30–40%. Tetcyclacis, an inhibitor of the oxidative breakdown of ABA, completely prevented the degradation of ABA in the soil solution. Acid conditions and high salt concentrations significantly retarded ABA breakdown.  相似文献   

5.
  • 1.1. Compositional analysis of plasma membranes from rats fed nutritionally adequate diets different in fatty acid composition establishes that fundamentally different dietary fat intake results in alteration in structural lipid composition of plasma membranes in brain, liver and the intestinal mucosa.
  • 2.2. Dietary differences in fatty acid intake altered the fatty acyl tail composition of plasma membrane phospholipids in brain, liver and intestinal mucosa.
  • 3.3. Diet altered the phospholipid profile observed in brain synaptosomal and liver plasma membrane.
  • 4.4. Feeding high vs low polyunsaturated to saturated fat diets for 7 days altered the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and mono-glucosylceramide isolated from plasma membrane of the intestinal mucosa
  相似文献   

6.
7.
8.
《Reproductive biology》2014,14(1):32-43
Polycystic ovary syndrome (PCOS) is the most common cause of female infertility affecting 6–8% of women worldwide. PCOS is characterized by two of the following three criteria: clinical or biochemical hyperandrogenism, oligo- or amenorrhea, and polycystic ovaries (PCO). In addition, women with PCOS are often obese and insulin resistant, and are at risk for type 2 diabetes and cardiovascular disease. The etiology of PCOS remains unknown. Therefore, several animal models for PCOS have been generated to gain insight into the etiology and development of the PCOS-associated phenotypes. Androgens are considered the main culprit of PCOS, and therefore, androgenization of animals is the most frequently used approach to induce symptoms that resemble PCOS. Prenatal or prepubertal androgen treatment results in many characteristics of human PCOS, including anovulation, cyst-like follicles, elevated luteinizing hormone (LH) levels, increased adiposity, and insulin insensitivity. However, PCOS has a heterogeneous presentation, and therefore it is difficult to generate a model that exactly reproduces the reproductive and metabolic phenotypes observed in women with PCOS. In this review, we discuss several mouse models for PCOS, and compare the reproductive and/or metabolic phenotypes observed in several androgen-induced models as well as in several genetic models.  相似文献   

9.
Since the discovery that Helicobacter pylori infection leads to gastric cancer, other chronic bacterial infections have been shown to cause cancer. The bacterial and host molecular mechanisms remain unclear. However, many bacteria that cause persistent infections produce toxins that specifically disrupt cellular signalling to perturb the regulation of cell growth or to induce inflammation. Other bacterial toxins directly damage DNA. Such toxins mimic carcinogens and tumour promoters and might represent a paradigm for bacterially induced carcinogenesis.  相似文献   

10.
11.
12.
Docosahexaenoic acid is a long-chain polyunsaturated fatty acid that is found in large quantity in the brain and which has repeatedly been observed to be related in positive ways to both cognitive function and cardiovascular health. The mechanisms through which docosahexaenoic acid affects cognition are not well understood, but in this article, we propose a hypothesis that integrates the positive effects of docosahexaenoic acid in the cognitive and cardiovascular realms through the autonomic nervous system. The autonomic nervous system is known to regulate vital functions such as heart rate and respiration, and has also been linked to basic cognitive components related to arousal and attention. We review the literature from this perspective, and delineate the predictions generated by the hypothesis. In addition, we provide new data showing a link between docosahexaenoic acid and fetal heart rate that is consistent with the hypothesis.  相似文献   

13.
We herein report the joint occurrence of an autistic disorder (AD) and X-linked hypophosphatemia. X-linked hypophosphatemia (XLH), an X-linked dominant disorder, is the most common of the inherited renal phosphate wasting disorders. Autism is a pervasive developmental disorder that occurs mainly due to genetic causes. In approximately 6-15% of cases, the autistic phenotype is a part of a broader genetic condition called syndromic autism.Therefore, reports of cases with the joint occurrence of a known genetic syndrome and a diagnosis of ASD by a child psychiatrist are relevant. A joint occurrence does not, however, mean that there is always a causal link between the genetic syndrome and the autistic behavioural phenotype. In this case, there are a number of arguments countering a causal link.  相似文献   

14.
15.
Little attention has been devoted to the expression of CART during development. However, a few studies in the central nervous system and periphery provide a clear indication that these peptides may play significant roles during histogenesis, and may have trophic actions.  相似文献   

16.
Alternative splicing (AS) generates multiple forms of proteins. A role for AS in the plant mitogen-activated protein kinase (MAPK) cascade has not been clarified. In this study, we analyzed expression of 20 Arabidopsis MAPK genes by RT-PCR and found five that generate splice variants. The MPK13 gene, with six exons and five introns, generates at least three splice variants, one in which complete splicing of five introns occurs (MPK13 Full), and ones in which the 4th and 5th introns are retained (MPK13 I4 and I5). Translation products of the splice variants MPK13 Full and I4, were found in Arabidopsis tissues by Western blot. Yeast two-hybrid analysis and protein kinase assays of recombinant proteins showed that neither I4 nor I5 interacted with upstream MAPKKs, and neither had protein kinase activity. However, MPK13 I4 protein enhanced the MKK6-dependent activation of MPK13 Full, indicating the possibility of an additional mechanism to regulate the MAPK cascade by AS.  相似文献   

17.
A potential interaction between pulmonary function, abnormal adipose tissue activity, and systemic inflammation has been suggested. This study explores the relationship between circulating soluble TNF-α receptors (sTNF-R1 and sTNF-R2) and respiratory function parameters in obese subjects. Thirty-one non-diabetic morbidly obese women with a history of non-smoking and without prior cardiovascular or respiratory disease were prospectively recruited in the outpatient Obesity Unit of a referral center. Pulmonary function test included a forced spirometry, static pulmonary volume measurements, non-attended respiratory polygraphy, and arterial gas blood sampling. Circulating levels of sTNFR-R1, sTNF-R2, interleukine 6 and adiponectin were determined using ELISA. Statistical analysis included a multivariate regression analysis taking into account the potential confounders. sTNF-R1 positively correlated with BMI (r=0.571, p=0.001) and arterial carbon dioxide pressure (PaCO(2), r=0.381, p=0.038), but negatively with forced expiratory volume in 1s (FEV(1), r=-0.437, p=0.012), maximum midexpiratory flow (FEF(25-75), r=-0.370, p=0.040) and forced vital capacity (FVC, r=-0.483, p=0.005). However, no correlation between sTNF-R2 and BMI and either pulmonary function tests or arterial blood samples was observed. Multiple linear regression analysis showed that sTNF-R1 independently predicted FEV(1) (beta=-0.437, p=0.012) and FVC (beta=-0.483, p=0.005). Thus, circulating levels of sTNF-R1, but not sTNF-R2, are related to reduced lung volumes and airflow limitation in morbidly obese patients prior to the development of a clinically recognized respiratory disease. Therefore, studies addressed to evaluating the potential beneficial effect of anti-TNF-α agents on pulmonary function tests in obese subjects seem warranted.  相似文献   

18.
Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as described in this review, can be used to generate specific hypotheses for studies on the effects of pesticides on the ovarian cycle, both in toxicological and epidemiological settings.  相似文献   

19.
Neuronal networks originating in the hypothalamic arcuate nucleus (Arc) play a fundamental role in controlling energy balance. In the Arc, neuropeptide Y (NPY)-producing neurons stimulate food intake, whereas neurons releasing the proopiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-MSH) strongly decrease food intake. There is growing evidence to suggest that apelin and its receptor may play a role in the central control of food intake, and both are concentrated in the Arc. We investigated the presence of apelin and its receptor in Arc NPY- and POMC-containing neurons and the effects of apelin on α-MSH release in the hypothalamus. We showed, by immunofluorescence and confocal microscopy, that apelin-immunoreactive (IR) neuronal cell bodies were distributed throughout the rostrocaudal extent of the Arc and that apelin was strongly colocalized with POMC, but weakly colocalized with NPY. However, there were numerous NPY-IR nerve fibers close to the apelin-IR neuronal cell bodies. By combining in situ hybridization with immunohistochemistry, we demonstrated the presence of apelin receptor mRNA in Arc POMC neurons. Moreover, using a perifusion technique for hypothalamic explants, we demonstrated that apelin-17 (K17F) increased α-MSH release, suggesting that apelin released somato-dendritically or axonally from POMC neurons may stimulate α-MSH release in an autocrine manner. Consistent with these data, hypothalamic apelin levels were found to be higher in obese db/db mice and fa/fa Zucker rats than in wild-type animals. These findings support the hypothesis that central apelin is involved in regulating body weight and feeding behavior through the direct stimulation of α-MSH release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号