首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pctaire1, a member of the cyclin-dependent kinase (Cdk)-related family, has recently been shown to be phosphorylated and regulated by Cdk5/p35. Although Pctaire1 is expressed in both neuronal and non-neuronal cells, its precise functions remain elusive. We performed a yeast two-hybrid screen to identify proteins that interact with Pctaire1. N-Ethylmaleimide-sensitive fusion protein (NSF), a crucial factor in vesicular transport and membrane fusion, was identified as one of the Pctaire1 interacting proteins. We demonstrate that the D2 domain of NSF, which is required for the oligomerization of NSF subunits, binds directly to and is phosphorylated by Pctaire1 on serine 569. Mutation of this phosphorylation site on NSF (S569A) augments its ability to oligomerize. Moreover, inhibition of Pctaire1 activity by transfecting its kinase-dead (KD) mutant into COS-7 cells enhances the self-association of NSF. Interestingly, Pctaire1 associates with NSF and synaptic vesicle-associated proteins in adult rat brain. To investigate whether Pctaire1 phosphorylation of NSF is involved in regulation of Ca(2+)-dependent exocytosis, we examined the effect of expressing Pctaire1 or NSF phosphorylation mutants on the regulated secretion of growth hormone from PC12 cells. Interestingly, expression of either Pctaire1-KD or NSF-S569A in PC12 cells significantly increases high K(+)-stimulated growth hormone release. Taken together, our findings provide the first demonstration that Pctaire1 phosphorylation of NSF regulates the ability of NSF to oligomerize, implicating an unexpected role of this kinase in modulating exocytosis. These findings open a new avenue of research in studying the functional roles of Pctaire1 in the nervous system.  相似文献   

2.
Lowenstein CJ  Tsuda H 《Biological chemistry》2006,387(10-11):1377-1383
Vascular injury triggers endothelial exocytosis of granules, releasing pro-inflammatory and pro-thrombotic mediators into the blood. Nitric oxide (NO) and reactive oxygen species (ROS) limit vascular inflammation and thrombosis by inhibiting endothelial exocytosis. NO decreases exocytosis by regulating the activity of the N-ethylmaleimide-sensitive factor (NSF), a central component of the exocytic machinery. NO nitrosylates specific cysteine residues of NSF, thereby inhibiting NSF disassembly of the soluble NSF attachment protein receptor (SNARE). NO also modulates exocytosis of other cells; for example, NO regulates platelet activation by inhibiting alpha-granule secretion from platelets. Other radicals besides NO can regulate exocytosis as well. For example, H(2)O(2) inhibits exocytosis by oxidizing NSF. Using site-directed mutagenesis, we have defined the critical cysteine residues of NSF, and found that one particular cysteine residue, C264, renders NSF sensitive to oxidative stress. Since radicals such as NO and H(2)O(2) inhibit NSF and decrease exocytosis, NSF may act as a redox sensor, modulating exocytosis in response to changes in oxidative stress.  相似文献   

3.
Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of alpha-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of alpha-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of alpha-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of alpha-SNAP potently inhibits Ca(2+)-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an alpha-SNAP mutant defective in NSF activation is used. We conclude that alpha-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for alpha-SNAP in the SNARE cycle that drives exocytotic membrane fusion.  相似文献   

4.
Extracellular ATP is a potent autocrine/paracrine signal that regulates a broad range of liver functions through activation of purinergic receptors. In biliary epithelium, increases in cell volume stimulate ATP release through a phosphoinositide 3-kinase (PI3-kinase)-dependent mechanism. Because PI3-kinase also regulates vesicular exocytosis, the purpose of these studies was to determine whether volume-stimulated vesicular exocytosis contributes to cellular ATP release. In a human cholangiocarcinoma cell line, exocytosis was measured by using the plasma membrane marker FM1-43, whereas ATP release was assessed by using a luciferase-luciferin assay. Under basal conditions, cholangiocytes exhibited constitutive exocytosis at a rate of 1.6%/min, and low levels of extracellular ATP were detected at 48.2 arbitrary light units. Increases in cholangiocyte cell volume induced by hypotonic exposure resulted in a 10-fold increase in the rate of exocytosis and a robust 35-fold increase in ATP release. Both vesicular exocytosis and ATP release were proportional to cell volume, and both exhibited similar regulatory properties including: 1) dependence on intact PI3-kinase, 2) attenuation by inhibition of PKC, and 3) potentiation by activation of PKC before hypotonic exposure. These findings demonstrate that increases in cholangiocyte cell volume stimulate ATP release and vesicular exocytosis through similar regulatory paradigms. Functional interactions among cell volume, PKC, and PI3-kinase modulate exocytosis, thereby regulating ATP release and purinergic signaling in cholangiocytes. It is hypothesized that PKC is involved in the recruitment of a volume-sensitive vesicular pool to a readily releasable state.  相似文献   

5.
Postsynaptic AMPA receptor (AMPAR) trafficking mediates some forms of synaptic plasticity that are modulated by NMDA receptor (NMDAR) activation and N-ethylmaleimide sensitive factor (NSF). We report that NSF is physiologically S-nitrosylated by endogenous, neuronally derived nitric oxide (NO). S-nitrosylation of NSF augments its binding to the AMPAR GluR2 subunit. Surface insertion of GluR2 in response to activation of synaptic NMDARs requires endogenous NO, acting selectively upon the binding of NSF to GluR2. Thus, AMPAR recycling elicited by NMDA neurotransmission is mediated by a cascade involving NMDA activation of neuronal NO synthase to form NO, leading to S-nitrosylation of NSF which is thereby activated, enabling it to bind to GluR2 and promote the receptor's surface expression.  相似文献   

6.
Nitric oxide (NO) inhibits vascular inflammation, but the molecular basis for its anti-inflammatory properties is unknown. We show that NO inhibits exocytosis of Weibel-Palade bodies, endothelial granules that mediate vascular inflammation and thrombosis, by regulating the activity of N-ethylmaleimide-sensitive factor (NSF). NO inhibits NSF disassembly of soluble NSF attachment protein receptor (SNARE) complexes by nitrosylating critical cysteine residues of NSF. NO may regulate exocytosis in a variety of physiological processes, including vascular inflammation, neurotransmission, thrombosis, and cytotoxic T lymphocyte cell killing.  相似文献   

7.
Although an excess of reactive oxygen species (ROS) can damage the vasculature, low concentrations of ROS mediate intracellular signal transduction pathways. We hypothesized that hydrogen peroxide plays a beneficial role in the vasculature by inhibiting endothelial exocytosis that would otherwise induce vascular inflammation and thrombosis. We now show that endogenous H(2)O(2) inhibits thrombin-induced exocytosis of granules from endothelial cells. H(2)O(2) regulates exocytosis by inhibiting N-ethylmaleimide sensitive factor (NSF), a protein that regulates membrane fusion events necessary for exocytosis. H(2)O(2) decreases the ability of NSF to hydrolyze adenosine triphosphate and to disassemble the soluble NSF attachment protein receptor complex. Mutation of NSF cysteine residue C264T eliminates the sensitivity of NSF to H(2)O(2), suggesting that this cysteine residue is a redox sensor for NSF. Increasing endogenous H(2)O(2) levels in mice decreases exocytosis and platelet rolling on venules in vivo. By inhibiting endothelial cell exocytosis, endogenous H(2)O(2) may protect the vasculature from inflammation and thrombosis.  相似文献   

8.
Polyamines (putrescine, spermidine, and spermine) are essential for growth and survival of all cells. When polyamine biosynthesis is inhibited, there is up-regulation of import. The mammalian polyamine transport system is unknown. We have previously shown that the heparan sulfate (HS) side chains of recycling glypican-1 (Gpc-1) can sequester spermine, that intracellular polyamine depletion increases the number of NO-sensitive N-unsubstituted glucosamines in HS, and that NO-dependent cleavage of HS at these sites is required for spermine uptake. The NO is derived from S-nitroso groups in the Gpc-1 protein. Using RNA interference technology as well as biochemical and microscopic techniques applied to both normal and uptake-deficient cells, we demonstrate that inhibition of Gpc-1 expression abrogates spermine uptake and intracellular delivery. In unperturbed cells, spermine and recycling Gpc-1 carrying HS chains rich in N-unsubstituted glucosamines were co-localized. By exposing cells to ascorbate, we induced release of NO from the S-nitroso groups, resulting in HS degradation and unloading of the sequestered polyamines as well as nuclear targeting of the deglycanated Gpc-1 protein. Polyamine uptake-deficient cells appear to have a defect in the NO release mechanism. We have managed to restore spermine uptake partially in these cells by providing spermine NONOate and ascorbate. The former bound to the HS chains of recycling Gpc-1 and S-nitrosylated the core protein. Ascorbate released NO, which degraded HS and liberated the bound spermine. Recycling HS proteoglycans of the glypican-type may be plasma membrane carriers for cargo taken up by caveolar endocytosis.  相似文献   

9.
Glypican-1 is a glycosylphosphatidylinositol anchored cell surface S-nitrosylated heparan sulfate proteoglycan that is processed by nitric oxide dependent degradation of its side chains. Cell surface-bound glypican-1 becomes internalized and recycles via endosomes, where the heparan sulphate chains undergo nitric oxide and copper dependent autocleavage at N-unsubstituted glucosamines, back to the Golgi. It is not known if the S-nitrosylation occurs during biosynthesis or recycling of the protein. Here we have generated a recombinant human glypican-1 lacking the glycosylphosphatidylinositol-anchor. We find that this protein is directly secreted into the culture medium both as core protein and proteoglycan form and is not subjected to internalization and further modifications during recycling. By using SDS-PAGE, Western blotting and radiolabeling experiments we show that the glypican-1 can be S-nitrosylated. We have measured the level of S-nitrosylation in the glypican-1 core protein by biotin switch assay and find that the core protein can be S-nitrosylated in the presence of copper II ions and NO donor. Furthermore the glypican-1 proteoglycan produced in the presence of polyamine synthesis inhibitor, α-difluoromethylornithine, was endogenously S-nitrosylated and release of nitric oxide induced deaminative autocleavage of the HS side chains of glypican-1. We also show that the N-unsubstituted glucosamine residues are formed during biosynthesis of glypican-1 and that the content increased upon inhibition of polyamine synthesis. It cannot be excluded that endogenous glypican-1 can become further S-nitrosylated during recycling.  相似文献   

10.
Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys(145) of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys(145) mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin-Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys(145) may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.  相似文献   

11.
Investigations of regulated S-nitrosylation and denitrosylation of vasorelevant proteins are a newly emergent area in vascular biology. We previously showed that monocrotaline pyrrole (MCTP)-induced megalocytosis of pulmonary arterial endothelial cells (PAECs), which underlies the development of pulmonary arterial hypertension, was associated with a Golgi blockade characterized by the trapping of diverse vesicle tethers, soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs), and soluble NSF-attachment proteins (SNAPs) in the Golgi; reduced trafficking of caveolin-1 (cav-1) and endotheial nitric oxide (NO) synthase (eNOS) from the Golgi to the plasma membrane; and decreased caveolar NO. We have investigated whether NSF, the ATPase involved in all SNARE disassembly, might be the upstream target of MCTP and whether MCTP might regulate NSF by S-nitrosylation. Immunofluorescence microscopy and Golgi purification techniques revealed the discordant decrease of NSF by approximately 50% in Golgi membranes after MCTP despite increases in alpha-SNAP, cav-1, eNOS, and syntaxin-6. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide failed to affect the initiation or progression of MCTP megalocytosis despite a reduction of 4,5-diaminofluorescein diacetate fluorescence and inhibition of S-nitrosylation of eNOS as assayed using the biotin-switch method. Moreover, the latter assay not only revealed constitutive S-nitrosylation of NSF, eNOS, cav-1, and clathrin heavy chain (CHC) in PAECs but also a dramatic 70-95% decrease in the S-nitrosylation of NSF, eNOS, cav-1, and CHC after MCTP. These data point to depletion of NSF from Golgi membranes as a mechanism for Golgi blockade after MCTP and to denitrosylation of vasorelevant proteins as critical to the development of endothelial cell megalocytosis.  相似文献   

12.
Endothelial exocytosis regulates vascular thrombosis and inflammation. The trafficking and release of endothelial vesicles is mediated by SNARE (Soluble NSF Attachment protein REceptors) molecules, but the exact identity of endothelial SNAREs has been unclear. Three SNARE molecules form a ternary complex, including isoforms of the syntaxin (STX), vesicle-associated membrane protein (VAMP), and synaptosomal-associated protein (SNAP) families. We now identify SNAP23 as the predominant endothelial SNAP isoform that mediates endothelial exocytosis of von Willebrand Factor (VWF). SNAP23 was localized to the plasma membrane. Knockdown of SNAP23 decreased endothelial exocytosis, suggesting it is important for endothelial exocytosis. SNAP23 interacted with the endothelial exocytic machinery, and formed complexes with other known endothelial SNARE molecules. Taken together, these data suggest that SNAP23 is a key component of the endothelial SNARE machinery that mediates endothelial exocytosis.  相似文献   

13.
Glucose-stimulated insulin release from pancreatic islet β-cells involves increased levels of reactive oxygen and nitrogen species. Although this is normal, under pathophysiological conditions such as chronic hyperglycemia and inflammation, insulin exocytosis fails, and yet the mechanistic reason for failure is unclear. Hypothesizing that exocytotic proteins might be targets of S-nitrosylation, with their dysfunction under conditions of nitrosative stress serving as a mechanistic basis for insulin secretory dysfunction, we identified the t-SNARE protein Syntaxin 4 as a target of modification by S-nitrosylation. The cellular content of S-nitrosylated Syntaxin 4 peaked acutely, within 5 min of glucose stimulation in both human islets and MIN6 β-cells, corresponding to the time at which Syntaxin 4 activation was detectable. S-Nitrosylation was mapped to Syntaxin 4 residue Cys(141), located within the Hc domain predicted to increase accessibility for v-SNARE interaction. A C141S-Syntaxin 4 mutant resisted S-nitrosylation induced in vitro by the nitric oxide donor compound S-nitroso-L-glutathione, failed to exhibit glucose-induced activation and VAMP2 binding, and failed to potentiate insulin release akin to that of wild-type Syntaxin 4. Strikingly, S-nitrosylation of Syntaxin 4 could be induced by acute treatment with inflammatory cytokines (TNFα, IL-1β, and IFNγ), coordinate with inappropriate Syntaxin 4 activation and insulin release in the absence of the glucose stimulus, consistent with nitrosative stress and dysfunctional exocytosis, preceding the cell dysfunction and death associated with more chronic stimulation (24 h). Taken together, these data indicate a significant role for reactive nitrogen species in the insulin exocytosis mechanism in β-cells and expose a potential pathophysiological exploitation of this mechanism to underlie dysfunctional exocytosis.  相似文献   

14.
Cells release ATP in response to physiologic stimuli. Extracellular ATP regulates a broad range of important cellular functions by activation of the purinergic receptors in the plasma membrane. The purpose of these studies was to assess the role of vesicular exocytosis in cellular ATP release. FM1-43 fluorescence was used to measure exocytosis and bioluminescence to measure ATP release in HTC rat hepatoma and Mz-Cha-1 human cholangiocarcinoma cells. Exposure to a Cl channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (50–300 μm) stimulated a 5–100-fold increase in extracellular ATP levels within minutes of the exposure. This rapid response was not a result of changes in cell viability or Cl channel activity. NPPB also potently stimulated ATP release in HEK293 cells and HEK293 cells expressing a rat P2X7 receptor indicating that P2X7 receptors are not involved in stimulation of ATP release by NPPB. In all cells studied, NPPB rapidly stimulated vesicular exocytosis that persisted many minutes after the exposure. The kinetics of NPPB-evoked exocytosis and ATP release were similar. Furthermore, the magnitudes of NPPB-evoked exocytosis and ATP release were correlated (correlation coefficient 0.77), indicating that NPPB may stimulate exocytosis of a pool of ATP-enriched vesicles. These findings provide further support for the concept that vesicular exocytosis plays an important role in cellular ATP release and suggest that NPPB can be used as a biochemical tool to specifically stimulate ATP release through exocytic mechanisms.  相似文献   

15.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.  相似文献   

16.
The role of the soluble NSF attachment protein receptor (SNARE) protein complex in release of multiple cotransmitters from autonomic vasodilator neurons was examined in isolated segments of guinea pig uterine arteries treated with botulinum neurotoxin A (BoNTA; 50 nM). Western blotting of protein extracts from uterine arteries demonstrated partial cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25) to a NH2-terminal fragment of approximately 24 kDa by BoNTA. BoNTA reduced the amplitude (by 70-80%) of isometric contractions of arteries in response to repeated electrical stimulation of sympathetic axons at 1 or 10 Hz. The amplitude of neurogenic relaxations mediated by neuronal nitric oxide (NO) was not affected by BoNTA, whereas the duration of peptide-mediated neurogenic relaxations to stimulation at 10 Hz was reduced (67% reduction in integrated responses). In contrast, presynaptic cholinergic inhibition of neurogenic relaxations was abolished by BoNTA. These results demonstrate that the SNARE complex has differential involvement in release of cotransmitters from the same autonomic neurons: NO release is not dependent on synaptic vesicle exocytosis, acetylcholine release from small vesicles is highly dependent on the SNARE complex, and neuropeptide release from large vesicles involves SNARE proteins that may interact differently with regulatory factors such as calcium.  相似文献   

17.
Septins are a family of 14 cytoskeletal proteins that dynamically form hetero-oligomers and organize membrane microdomains for protein complexes. The previously reported interactions with SNARE proteins suggested the involvement of septins in exocytosis. However, the contradictory results of up- or down-regulation of septin-5 in various cells and mouse models or septin-4 in mice suggested either an inhibitory or a stimulatory role for these septins in exocytosis. The involvement of the ubiquitously expressed septin-2 or general septin polymerization in exocytosis has not been explored to date. Here, by nano-LC with tandem MS and immunoblot analyses of the septin-2 interactome in mouse brain, we identified not only SNARE proteins but also Munc-18-1 (stabilizes assembled SNARE complexes), N-ethylmaleimide-sensitive factor (NSF) (disassembles SNARE complexes after each membrane fusion event), and the chaperones Hsc70 and synucleins (maintain functional conformation of SNARE proteins after complex disassembly). Importantly, α-soluble NSF attachment protein (SNAP), the adaptor protein that mediates NSF binding to the SNARE complex, did not interact with septin-2, indicating that septins undergo reorganization during each exocytosis cycle. Partial depletion of septin-2 by siRNA or impairment of septin dynamics by forchlorfenuron inhibited constitutive and stimulated exocytosis of secreted and transmembrane proteins in various cell types. Forchlorfenuron impaired the interaction between SNAP-25 and its chaperone Hsc70, decreasing SNAP-25 levels in cultured neuroendocrine cells, and inhibited both spontaneous and stimulated acetylcholine secretion in mouse motor neurons. The results demonstrate a stimulatory role of septin-2 and the dynamic reorganization of septin oligomers in exocytosis.  相似文献   

18.
Tian C  Gao P  Zheng Y  Yue W  Wang X  Jin H  Chen Q 《Cell research》2008,18(4):458-471
lntracellular redox homeostasis plays a critical role in determining tumor cells' sensitivity to drug-induced apoptosis. Here we investigated the role of thioredoxin-1 (TRX1), a key component of redox regulation, in arsenic trioxide (AS2O3)-induced apoptosis. Over-expression of wild-type TRX1 in HepG2 cells led to the inhibition of As2O3-induced cytochrome c (cyto c) release, caspase activation and apoptosis, and down-regulation of TRX1 expression by RNAi sensitized HepG2 cells to As2O3-induced apoptosis. Interestingly, mutation of the active site of TRX1 from Cys^32/35 to Ser^32/35 converted this molecule from an apoptotic protector to an apoptotic promoter. In an effort to understand the mechanisms of this conversion, we used isolated mitochondria from mouse liver and found that recombinant wild-type TRX1 could protect mitochondria from the apoptotic changes. In contrast, the mutant form of TRX1 alone elicited mitochondria-related apoptotic changes, including the mitochondrial permeability transition pore (mPTP) opening, loss of mitochondrial membrane potential, and cyto c release from mitochondria. These apoptotic effects were inhibited by cyclosporine A (CsA), indicating that mutant TRX1 targeted to mPTP. Alteration of TRX1 from its reduced form to oxidized form in vivo by 2,4-dinitrochlorobenzene (DNCB), a specific inhibitor ofTRX reductase, also sensitized HepG2 cells to As203-induced apoptosis. These data suggest that TRX1 plays a central role in regulating apoptosis by blocking cyto c release, and inactivation of TRX1 by either mutation or oxidization of the active site cysteines may sensitize tumor cells to As2O3-induced apoptosis.  相似文献   

19.
Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.  相似文献   

20.
How fusion pore formation during exocytosis affects the subsequent release of vesicle contents remains incompletely understood. It is unclear if the amount released per vesicle is dependent upon the nature of the developing fusion pore and whether full fusion and transient kiss and run exocytosis are regulated by similar mechanisms. We hypothesise that if consistent relationships exist between these aspects of exocytosis then they will remain constant across any age. Using amperometry in mouse chromaffin cells we measured catecholamine efflux during single exocytotic events at P0, 1 month and 6 months. At all ages we observed full fusion (amperometric spike only), full fusion preceded by fusion pore flickering (pre-spike foot (PSF) signal followed by a spike) and pure "kiss and run" exocytosis (represented by stand alone foot (SAF) signals). We observe age-associated increases in the size of all 3 modes of fusion but these increases occur at different ages. The release probability of PSF signals or full spikes alone doesn't alter across any age in comparison with an age-dependent increase in the incidence of "kiss and run" type events. However, the most striking changes we observe are age-associated changes in the relationship between vesicle size and the membrane bending energy required for exocytosis. Our data illustrates that vesicle size does not regulate release probability, as has been suggested, that membrane elasticity or flexural rigidity change with age and that the mechanisms controlling full fusion may differ from those controlling "kiss and run" fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号