首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increasing evidence suggests that bone marrow-derived mesenchymal stem cells (MSCs) are recruited into the stroma of developing tumors where they contribute to cancer progression. MSCs produce different growth factors that sustain tumor-associated neo-angiogenesis. Since the majority of carcinomas secrete ligands of the epidermal growth factor receptor (EGFR), we assessed the role of EGFR signaling in regulating the release of angiogenic factors in MSCs. Treatment of human primary MSCs and of the human osteoblastic cell line hFOB with transforming growth factor α (TGF-α), one of the main ligands of the EGFR, significantly induced activation of this receptor and of different intracellular signaling proteins, including the PI3K/AKT and the MEK/MAPK pathways. TGF-α induced a significant increase in the levels of secretion of vascular endothelial growth factor in both MSCs and hFOB. Conditioned medium from TGF-α treated MSCs showed an higher in vivo angiogenic effect as compared with medium from untreated cells. Treatment of MSCs with TGF-α also produced a significant increase in the secretion of other angiogenic growth factors such as angiopoietin-2, granulocyte-colony stimulating factor, hepatocyte growth factor, interleukin (IL)-6, IL-8, and platelet-derived growth factor-BB. Using selective MEK and PI3K inhibitors, we found that both MEK/MAPK and the PI3K/AKT signaling pathways mediate the ability of TGF-α to induce secretion of angiogenic factors in MSCs. Finally, stimulation with TGF-α increased the ability of MSCs to induce migration of MCF-7 breast cancer cells. These data suggest that EGFR signaling regulates the ability of MSCs to sustain cancer progression through the release of growth factors that promote neo-angiogenesis and tumor cell migration.  相似文献   

3.
4.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

5.
6.
7.
Recently, mesenchymal stem cells (MSCs) have been extensively used for cell‐based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time‐lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF‐stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F‐actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. J. Cell. Physiol. 228: 149–162, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
The complex interplay between cellular signaling and metabolism in eukaryotic cells just start to emerge. Coenzyme A (CoA) and its derivatives play a key role in cell metabolism and also participate in regulatory processes. CoA Synthase (CoASy) is a mitochondria-associated enzyme which mediates two final stages of de novo CoA biosynthesis. Here, we report that CoASy is involved in signaling events in the cell and forms a functional complex with p85αPI3K in vivo. Importantly, observed interaction of endogenous CoASy and p85αPI3K is regulated in a growth factor dependent manner. Surprisingly, both catalytic p110α and regulatory p85α subunits of PI3K were detected in mitochondrial fraction where mitochondria-localized p85αPI3K was found in complex with CoASy. Unexpectedly, significant changes of PI3K signaling pathway activity were observed in experiments with siRNA-mediated CoASy knockdown pointing on the role of CoA biosynthetic pathway in signal transduction.  相似文献   

10.
Signaling through phosphatidylinositol-3 kinases (PI3K) regulates fundamental cellular processes such as survival and growth, and these lipid kinases are currently being investigated as therapeutic targets in several contexts. In skeletal tissue, experiments using pan-specific PI3K inhibitors have suggested that PI3K signaling influences both osteoclast and osteoblast function, but the contributions of specific PI3K isoforms to these effects have not been examined. In the current work, we assessed the effects of pharmacological inhibitors of the class Ia PI3Ks, α, β, and δ, on bone cell growth, differentiation and function in vitro. Each of the class Ia PI3K isoforms is expressed and functionally active in bone cells. No consistent effects of inhibitors of p110-β or p110-δ on bone cells were observed. Inhibitors of p110-α decreased osteoclastogenesis by 60-80% (p < 0.001 vs control) by direct actions on osteoclast precursors, and decreased the resorptive activity of mature osteoclasts by 60% (p < 0.01 vs control). The p110-α inhibitors also decreased the growth of osteoblastic and stromal cells (p < 0.001 vs control), and decreased differentiated osteoblast function by 30% (p < 0.05 vs control). These data suggest that signaling through the p110-α isoform of class Ia PI3Ks positively regulates the development and function of both osteoblasts and osteoclasts. Therapeutic agents that target this enzyme have the potential to significantly affect bone homeostasis, and evaluation of skeletal endpoints in clinical trials of such agents is warranted.  相似文献   

11.
Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/β inhibitor, of which IL-1β, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko, TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.  相似文献   

12.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

13.
14.
Lewis Y (LeY) is a carbohydrate tumor‐asssociated antigen. The majority of cancer cells derived from epithelial tissue express LeY type difucosylated oligosaccharide. Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of LeY oligosaccharide. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation, but the mechanism is still largely unknown. Herein, we investigated the role of the mitogen‐activated protein kinases (MAPKs) and phosphoinositide‐3 kinase (PI3K)/Akt signaling pathways on FUT4‐induced cell proliferation. Results show that overexpression of FUT4 increases the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt. Inhibitors of PI3K (LY294002 and Wortmannin) prevented the phosphorylation of ERK1/2, p38 MAPK, and Akt PI3K). Moreover, phosphorylation of Akt is abolished by inhibitors of ERK1/2 (PD98059) and p38 MAPK (SB203580). These data suggested that FUT4 not only activates MAPK and PI3K/Akt signals, but also promotes the crosstalk among these signaling pathways. In addition, FUT4‐induced stimulation of cell proliferation correlates with increased cell cycle progression by promoting cells into S‐phase. The mechanism involves in increased expression of cyclin D1, cyclin E, CDK 2, CDK 4, and pRb, and decreased level of cyclin‐dependent kinases inhibitors p21 and p27, which are blocked by the inhibitors of upstream signal molecules, MAPK and PI3K/Akt. In conclusion, these studies suggest that FUT4 regulates A431 cell growth through controlling cell cycle progression via MAPK and PI3K/Akt signaling pathways. J. Cell. Physiol. 225: 612–619, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The efficacy of mesenchymal stem cell (MSC) therapy for myocardial regeneration is limited by the poor survival of stem cells after transplantation into the infarcted heart. To improve the cell survival of MSCs in the infarcted heart, MSCs were genetically engineered to overexpress phosphoinositide-3-kinase class II alpha (PI3K-C2α). PI3K-C2α overexpression increased PI3K expression and the cell viability of MSCs. Furthermore, levels of survival-related phosphorylation were elevated in PI3K-C2α-MSCs. But, the level of apoptotic proteins downregulated and the number of PI-positive cells decreased in PI3K-C2α-MSCs compared to hypoxic MSCs. Nine rats per group had 1 × 106 cells (20 μl PBS) transplanted after myocardial infarction. One week after transplantation, infarct size and area of fibrosis were reduced in the PI3K-C2α-MSC-transplanted group. The number of TUNEL positive cells declined, while the mean microvessel count per field was higher in the PI3K-C2α-MSC group than the MSC-injected group. Heart function was improved in the PI3K-C2α-MSCs group as assessed using a Millar catheter at 3 weeks after transplantation. These findings suggest that overexpression of PI3K-C2α in MSCs can assist cell survival and enhance myocardial regeneration.  相似文献   

16.
The p85alpha regulatory subunit of class I(A) phosphoinositide 3-kinases (PI3K) is derived from the Pik3r1 gene, which also yields alternatively spliced variants p50alpha and p55alpha. It has been proposed that excess monomeric p85 competes with functional PI3K p85-p110 heterodimers. We examined embryonic stem (ES) cells with heterozygous and homozygous disruptions in the Pik3r gene and found that wild type ES cells express virtually no monomeric p85alpha. Although, IGF-1-stimulated PI3K activity associated with insulin receptor substrates was unaltered in all cell lines, p85alpha-null ES cells showed diminished protein kinase B activation despite increased PI3K activity associated with the p85beta subunit. Furthermore, p85alpha-null cells demonstrated growth retardation, increased frequency of apoptosis, and altered cell cycle regulation with a G(0)/G(1) cell cycle arrest and up-regulation of p27(KIP), whereas signaling through CREB and MAPK was enhanced. These phenotypes were reversed by re-expression of p85alpha via adenoviral gene transfer. Surprisingly, all ES cell lines could be differentiated into adipocytes. In these differentiated ES cells, however, compensatory p85beta signaling was lost in p85alpha-null cells while increased signaling by CREB and MAPK was still observed. Thus, loss of p85alpha in ES cells induced alterations in IGF-1 signaling and regulation of apoptosis and cell cycle but no defects in differentiation. However, differentiated ES cells partially lost their ability for compensatory signaling at the level of PI3K, which may explain some of the defects observed in mice with homozygous deletion of the Pik3r1 gene.  相似文献   

17.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

18.
Genetic variations in oncogenes can often promote uncontrolled cell proliferation by altering the structure of the encoded protein, thereby altering its function. The PI3KCA oncogene that encodes for p110α, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), is one the most frequently mutated oncogenes in humans. PI3K plays a pivotal role in cell division. PI3K consists of two subunits: the catalytic (p110α) and regulatory (p85α). The regulatory subunit usually controls the catalytic subunit and switches off the enzyme when not required. It is believed that mutations in PI3KCA gene can alter the control of p85α over p110α and can sustain p110α in a prolonged active state. This in turn results in uncontrolled cell division. In this study, we investigate the pathogenic role of two point mutations: E542K and E545K on p110α subunit and how they alter its binding with the regulatory subunit. Molecular interaction and molecular dynamic simulation analysis are performed to study the dynamic behaviour of native and mutant structures at atomic level. Mutant p110α showed less interaction with its regulatory partner p85α than the native did, due to its expanded and rigid structure. Our analysis clearly points out that the structural and functional consequences of the mutations could promote tumour proliferation.  相似文献   

19.
The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α.  相似文献   

20.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell‐cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst‐positive cell number, and altered the apoptotic‐related proteins (caspase‐3/9, Bax, and Bcl‐2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca‐8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p‐AKT Ser473) in Tca‐8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5‐silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号