首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The fluorescence emission decay of ANS (1,8-anilinonaphthalenesulfonate) in reversed AOT (sodium bis-(2-ethyl-1-hexy)sulfosuccinate) micelles at different water contents was investigated by frequency domain fluorometry. The whole ANS emission decay in reversed AOT micelles could not be fitted in terms of discrete lifetime values, i.e., mono-exponential and bi-exponential models. Better fits were obtained when using continuous unimodal Lorentzian lifetime distributions. This was interpreted as arising from the reorientation processes of water molecules around the excited state of ANS or probe exchange among different probe locations, occurring on a time scale longer than fluorophore lifetime. The dependence of ANS fluorescence anisotropy on the emission wavelength was consistent with the existence of a great emission heterogeneity especially for inverted micelles having reduced H2O/AOT molar ratio. Finally, the observation that the distribution width decreases with increasing temperature and/or micelle size suggested that fast processes of water dipolar reorganization around the fluorophore are facilitated under these conditions.  相似文献   

2.
The fluorescence decay of the plasma membrane calmodulin-activated Ca2(+)-ATPase from the erythrocyte was measured for the first time. The availability of a novel procedure for on-line blank subtraction in frequency-domain lifetime data acquisition (G.G. Reinhart, B. Feddersen, D. Jameson and E. Gratton, Biophys. J. 57 (1990) 189a) permitted the elimination of background interference from detergent-solubilized purified plasma membrane ATPase samples. The fluorescence decay of the erythrocyte Ca2(+)-ATPase was measured in the absence of Ca2+, or in the presence of Ca2+ or Ca2+ plus calmodulin. In the three different experimental conditions the fluorescence decay was very heterogeneous and could be best described by Lorentzian distributions of lifetime values. In the absence of Ca2+ the decay was described by a broad lifetime distribution centered at 4.4 ns with a width of 3.2 ns, indicating heterogeneity of tryptophan microenvironments in the ATPase. Calcium ion binding promoted an 11% increase in the center and a 27% decrease in the width of the distribution. By contrast, addition of calmodulin in the presence of Ca2+ caused a 15% decrease in the center of the distribution, revealing structural difference between calmodulin-activated and Ca2(+)-activated states of the ATPase. These results indicate the usefulness of on-line blank subtraction in frequency-domain lifetime measurements to investigate conformational changes in detergent-solubilized membrane protein samples.  相似文献   

3.
The measurement of time-resolved fluorescence parameters in living cells provides a powerful approach to study cell structure and dynamics. An epifluorescence microscope was constructed to resolve multi-component fluorescence lifetimes and complex anisotropy decay rapidly in labile biological samples. The excitation source consisted of focused, polarized laser light modulated by an impulse-driven Pockels' cell; parallel acquisition of phase angles and modulation amplitudes at more than 40 frequencies (5-250 MHz) was obtained by multi-harmonic cross-correlation detection. Lifetime decay was measured against standard solutions introduced into the light path proximal to the microscope objective. Anisotropy decay was measured by rotation of a Glan-Thompson polarizer in the emission path. Phase reference light was split from the beam proximal to the microscope. Optical components were selected to avoid depolarization and to optimize fluorescence detection efficiency. The dichoric was replaced by a 1 mm square mirror. Fitting routine statistics were optimized for model discrimination in realistic biological samples. Instrument performance was evaluated using fluorescein in H2O/glycerol and H2O/ethylene glycol mixtures and in Swiss 3T3 fibroblasts in monolayer culture. Objective depolarization effects were evaluated by measurement of anisotropy decay using objectives of different numerical aperture. Lifetime and anisotropy decay measured by microscopy (0.5 micron laser spot) agreed with data obtained by cuvette fluorimetry. New biological applications for time-resolved fluorescence microscopy are discussed.  相似文献   

4.
The fluorescent sterol delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) was incoporated into 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) small unilamellar vesicles (SUV) with and without cholesterol in order to monitor sterol-sterol interactions in model membranes. Previously another fluorescent sterol, dehydroergosterol (F. Schroeder, Y. Barenholz, E. Gratton and T.E. Thompson. Biochemistry 26 (1987) 2441), was used for this purpose. However, there is some concern that dehydroergosterol may not be the best analogue for cholesterol. Fluorescence properties of cholestatrienol in POPC SUV were highly sensitive to cholestatrienol purity. The fluorescence decay of cholestatrienol in the POPC SUV was analyzed by assuming either that the decay is comprised of a discrete sum of exponential components or that the decay is made up of one or more component's distribution of lifetimes. The decay for cholestatrienol in POPC SUV analyzed using distributions had a lower chi 2 value and was described by a two-component Lorentzian function with centers near 0.86 and 3.24 ns, and fractional intensities of 0.96 and 0.04, respectively. Both distributions were quite narrow, i.e., 0.05 ns full-width at half-maximum peak height. It is proposed that the two lifetime distributions are generated by separate continua of environments for the cholestatrienol molecule described by different dielectric constants. In the range 0-6 mol% cholestatrienol, the cholestatrienol underwent a concentration-dependent relaxation. This process was characterized by red-shifted absorption and maxima and altered ratios of absorption and fluorescence excitation maxima. Fluorescence quantum yield, lifetime, steady-state anisotropy, limiting anisotropy and rotational rate remained constant. In contrast, in POPC vesicles containing between 6 and 33 mol% cholestatrienol, the fluorescent cholestatrienol partially segregated, resulting in quenching. Thus, below 6 mol% cholestatrienol, the cholestatrienol appeared to behave in part as monomers exposed to some degree to the aqueous solvent in a sterol-poor domain within POPC bilayers. Since the lifetime did not decrease above 6 mol% cholestatrienol, the fluorescence at high mol% values of cholestatrienol was due to cholestatrienol in the sterol-poor domain. The fluorescence intensity, quantum yield, steady-state anisotropy, and limiting anisotropy of cholestatrienol in the sterol-poor domain decreased to limiting, nonzero values while the rotational rate increased to a limiting value. Thus, the sterol-poor domain became more disordered when it coexisted with the sterol-rich domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Cholesterol-rich microdomains (or "lipid rafts") within the plasma membrane have been hypothesized to exist in a liquid-ordered phase and play functionally important roles in cell signaling; however, these microdomains defy detection using conventional imaging. To visualize domains and relate their nanostructure and dynamics to mast cell signaling, we use two-photon (760 nm and 960 nm) fluorescence lifetime imaging microscopy and fluorescence polarization anisotropy imaging, with comparative one-photon anisotropy imaging and single-point lifetime and anisotropy decay measurements. The inherent sensitivity of ultrafast excited-state dynamics and rotational diffusion to the immediate surroundings of a fluorophore allows for real-time monitoring of membrane structure and organization. When the high affinity receptor for IgE (FcepsilonRI) is extensively cross-linked with anti-IgE, molecules associated with cholesterol-rich microdomains (e.g., saturated lipids (the lipid analog diI-C(18) or glycosphingolipids)) and lipid-anchored proteins coredistribute with cross-linked IgE-FcepsilonRI. We find an enhancement in fluorescence lifetime and anisotropy of diI-C(18) and Alexa 488-labeled IgE-FcepsilonRI in the domains where these molecules colocalize. Our results suggest that fluorescence lifetime and, particularly, anisotropy permit us to correlate the recruitment of lipid molecules into more ordered domains that serve as platforms for IgE-mediated signaling.  相似文献   

6.
The mammalian heterogeneous ribonucleoprotein (hnRNP) A1 and its constituent N-terminal domain, termed UP1, have been studied by steady-state and dynamic fluorimetry, as well as phosphorescence and optically detected magnetic resonance (ODMR) spectroscopy at cryogenic temperatures. The results of these diverse techniques coincide in assigning the site of the single tryptophan residue of A1, located in the UP1 domain, to a partially solvent-exposed site distal to the protein's nucleic acid binding surface. In contrast, tyrosine fluorescence is significantly perturbed when either protein associates with single-stranded polynucleotides. Tyr to Trp energy transfer at the singlet level is found for both UP1 and A1 proteins. Single-stranded polynucleotide binding induces a quenching of their intrinsic fluorescence emission, which can be attributed to a significant reduction (greater than 50%) of the Tyr contribution, while Trp emission is only quenched by approximately 15%. Tyrosine quenching effects of similar magnitude are seen upon polynucleotide binding by either UP1 (1 Trp, 4 Tyr) or A1 (1 Trp, 12 Tyr), strongly suggesting that Tyr residues in both the N-terminal and C-terminal domain of A1 are involved in the binding process. Tyr phosphorescence emission was strongly quenched in the complexes of UP1 with various polynucleotides, and was attributed to triplet state energy transfer to nucleic acid bases located in the close vicinity of the fluorophore. These results are consistent with stacking of the tyrosine residues with the nucleic acid bases. While the UP1 Tyr phosphorescence lifetime is drastically shortened in the polynucleotide complex, no change of phosphorescence emission maximum, phosphorescence decay lifetime or ODMR transition frequencies were observed for the single Trp residue. The results of dynamic anisotropy measurements of the Trp fluorescence have been interpreted as indicative of significant internal flexibility in both UP1 and A1, suggesting a flexible linkage connecting the two sub-domains in UP1. Theoretical calculations based on amino acid sequence for chain flexibility and other secondary structural parameters are consistent with this observation, and suggest that flexible linkages between sub-domains may exist in other RNA binding proteins. While the dynamic anisotropy data are consistent with simultaneous binding of both the C-terminal and the N-terminal domains to the nucleic acid lattice, no evidence for simultaneous binding of both UP1 sub-domains was found.  相似文献   

7.
We report the first time-resolved fluorescence emission spectra and time-resolved fluorescence anisotropies obtained using frequency-domain fluorescence spectroscopy. We examined the fluorophore p-2-toluidinyl-6-naphthalenesulfonic acid (TNS) in viscous solvents and bound to the heme site of apomyoglobin using multifrequency phase fluorometers. Fluorescence phase shift and modulation data were obtained at modulation frequencies ranging from 1 to 200 MHz. For time-resolved emission spectra, the impulse response for the decay of intensity at each emission wavelength was obtained from the frequency response of the sample at the same emission wavelength. The decays have negative pre-exponential factors, consistent with a time-dependent spectral shift to longer wavelengths. These multiexponential decays were used to construct the time-resolved emission spectra, which were found to be in good agreement with earlier spectra obtained from time-domain measurements. Additionally, time-resolved anisotropies were obtained from the frequency-dependent phase angle differences between the parallel and perpendicularly polarized components of the emission. The rotational correlation times of TNS bound to apomyoglobin are consistent with those expected for this probe rigidly bound to the protein. TNS in propylene glycol also displayed a single exponential decay of anisotropy. These results, in conjunction with the previous successful resolution of multiexponential decays of fluorescence intensity (Lakowicz, J. R., Gratton, E., Laczko, G., Cherek, H., and Limkeman, M. (1984) Biophys. J., in press; Gratton, E., Lakowicz, J. R., Maliwal, B. P., Cherek, H., Laczko, G., and Limkeman, M. (1984) Biophys. J., in press) demonstrate that frequency-domain measurements provide information which is, at a minimum, equivalent to that obtainable from time-domain measurements.  相似文献   

8.
The binding of cyclosporine to human peripheral blood lymphocytes (PBLs) was studied by measuring the fluorescence emission spectrum and lifetime of the fluorescent and immunosuppressive cyclosporine derivative dansyl-cyclosporine (DCs). The emission maximum and fluorescence lifetime of DCs were characterized in several solvents. The fluorescence emission maximum and lifetime of DCs increased at a high dielectric constant. The fluorescence lifetime decay curve of DCs was a monoexponential function in all solvents tested. Fluorescence micrographs of lipid vesicles and erythrocytes labeled with DCs exhibit uniform staining patterns, whereas PBLs show heterogeneous DCs labeling. DCs exhibits a relatively low emission maximum (490 nm) in erythrocyte membranes. Such an emission maximum is characteristic of a hydrophobic environment. DCs in PBLs also has a low emission maximum (484 nm). The lifetime of DCs in PBLs required two exponential terms to properly fit the lifetime decay curve and could not be attributed to light scattering. One short component (4.7 +/- 1.0 ns) and a second long component (18.5 +/- 1.0 ns) were resolved from the DCs fluorescence decay curves. Time-resolved anisotropy of DCs in PBLs revealed that the labeled drug was present in an anisotropic environment, consistent with at least some DCs being bound to a membrane. These fluorescence studies suggest that DCs interacts with multiple and/or heterogeneous sites in peripheral blood lymphocytes.  相似文献   

9.
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.  相似文献   

10.
The fluorescence emission of 1,6-diphenyl-1,3,5-hexatriene (DPH) in K562 cell membranes has been studied using multifrequency phase and modulation fluorimetry. The DPH decay data collected at various modulation frequencies were analysed by assuming either a model of discrete exponential components or a model of continuous lifetime distribution. The fits showed smaller values of the reduced chi square using the model of continuous lifetime distribution. The K562 cell membranes dynamics were investigated during the cell differentiation along the erythroid pathway. By using the continuous lifetime distribution method for the analysis of the DPH decay, marked variations were observed during the four initial days of the erythroid differentiation. Namely, the width of the DPH lifetime distribution increased by a factor of about two, while the center value of the distribution remained constant. By using the discrete exponential components model for the analysis of the DPH decay no variations were observed during the K562 differentiation.  相似文献   

11.
The fluorescence decay of apoazurin derived from Pseudomonas aeruginosa is monoexponential. By this criterion the population of molecules of apoazurin is homogeneous. The emission anisotropy factor and the absorption anisotropy factor at the red edge of the absorption band assume similar values, showing that the tryptophan residue in apoazurin has the same asymmetric environment both in the ground and excited states. This finding suggests tight packing of the protein at the tryptophan environment. Native azurin does not decay monoexponentially. Moreover, comparison between the quantum yield calculated from the decay kinetics and the one measured directly shows that the majority of the azurin molecules are not fluorescent. There is thus variability in the structure of azurin molecules with an equilibration time that is longer than the fluorescence lifetime. Different asymmetric environment was found for the tryptophan residue in oxidized and reduced holoprotein and in apoazurin, as studied by the circular polarization of the fluorescence. D(2)O increases the fluorescence lifetime of apoazurin by 6 percent, compared to the lifetime in H(2)O solution; therefore water molecules may have access to the tryptophan residue, though the latter is situated in a hydrophobic environment.  相似文献   

12.
The use of conventional fluorophores suffers from some limitations in biological fluids due to low signal/background ratio. Today, this sensitivity issue might be reasonably improved thanks to lanthanide chelates, by selective detection of long decay fluorescence. Use of pulsed light source time-resolved fluorimetry takes into account the fluorescence decay time of the lanthanide chelates to gain sensitivity in biological media. Lipid-DTPA: Eu compounds have been prepared and incorporated into liposomes to evaluate europium based detection of liposomes in biological media. Fluorescence emission was not modified by this incorporation. Europium labelled liposomes were used for biodistribution studies and showed their use in this context.  相似文献   

13.
14.
A new setup for time-resolved fluorescence micro-spectroscopy of cells, based on multi-dimensional time-correlated single photon counting, was designed and tested. Here we demonstrate that the spectrometer allows fast and reproducible measurements of endogenous flavin fluorescence measured directly in living cardiac cells after excitation with visible picosecond laser diodes. Two complementary approaches for the analysis of spectrally- and time-resolved autofluorescence data are presented, comprising the fluorescence decay fitting by exponential series and the time-resolved emission spectroscopy analysis. In isolated cardiac myocytes, we observed three distinct lifetime pools with characteristic lifetime values spanning from picosecond to nanosecond range and the time-dependent red shift of the autofluorescence emission spectra. We compared obtained results to in vitro recordings of free flavin adenine dinucleotide (FAD) and FAD in lipoamide dehydrogenase (LipDH). The developed setup combines the strength of both spectral and fluorescence lifetime analysis and provides a solid base for the study of complex systems with intrinsic fluorescence, such as identification of the individual flavinoprotein components in living cardiac cells. This approach therefore constitutes an important instrumental advancement towards redox fluorimetry of living cardiomyocytes, with the perspective of its applications in the investigation of oxidative metabolic state under pathophysiological conditions, such as ischemia and/or metabolic disorders.  相似文献   

15.
We have used frequency domain fluorescence techniques to resolve the component emission spectra for several two tryptophan containing proteins (e.g., horse liver alcohol dehydrogenase, sperm whale apomyoglobin, yeast 3-phosphoglycerate kinase, apoazurin from Alcaligenes denitricans). We have first performed multifrequency phase/modulation measurements and have found the fluorescence of each of these proteins to be described by a double exponential. Then, using phase-sensitive detection and the algorithm of Gratton and Jameson [Gratton, E., & Jameson, D. M. (1985) Anal. Chem. 57, 1694-1697], we have determined the emission spectrum associated with each decay time for these proteins. We have compared these phase-resolved spectra with the fractional contributions of the component fluorophores determined by selective solute quenching experiments. Reasonably good agreement is seen in most cases, which argues that the individual Trp residues emit independently. In the case of apoazurin, however, a negative amplitude is seen for the phase-resolved spectrum of the short-lifetime component. This pattern is consistent with the occurrence of energy transfer from the internal Trp residue to the surface Trp of this protein. We also present multifrequency lifetime measurements, phase-resolved spectra, and solute quenching data for a few protein-ligand complexes, to illustrate the utility of this approach for the study of changes in the fluorescence of proteins.  相似文献   

16.
We used frequency-domain fluorometry to demonstrate the presence of an associated decay of fluorescence anisotropy. In such systems the individual correlation times are associated with distinct emitting species, each with its own characteristic lifetime and rotational correlation times. We obtained an associated system using 1-anilino-8-naphthalenesulfonic acid (ANS) in the presence of increasing amounts of apomyoglobin. When both free and apomyoglobin-bound ANS contributed to the emission the differential polarized phase angles become negative at particular frequencies, even though the fundamental anisotropy (r0) is greater than zero. Additionally, the modulated anisotropy decreases at high frequencies. Both observations appear to be the unique consequence of an associated anisotropy decay, and are not possible for a multiexponential anisotropy decay of a single species.  相似文献   

17.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

18.
In wavelength-resolved steady state spectra we observe three different kinds of emission from histone H1, a class A protein with only a single tyrosine residue. Unfolded H1 emissions that peak at approximately 300 and 340 nm can both be excited maximally at approximately 280 nm. Another, peaking much further to the red at approximately 400 nm, can be excited maximally at approximately 320 nm. The 300-nm fluorescence can be resolved by lifetime measurements into three components with decay times of approximately 1, 2, and 4 ns. On sodium-chloride-induced refolding of H1, simplification of the emission properties occurs. The 340 and 400-nm components disappear while the two shorter lifetime components of the 300-nm band diminish in amplitude and are replaced by the 4-ns decay. We believe that the 340-nm emission is tyrosinate fluorescence resulting from excited-state proton transfer. The origin of the 400-nm emission remains uncertain. We assign the 1 and 2-ns components of the 300-nm emission to two states of tyrosine in denatured H1 and the 4-ns decay to fluorescence of the single tyrosine residue in the globular region of refolded H1. Our results support the contention that salt induced folding of H1 is a cooperative two state process, and permit us to better understand the previously reported increases in fluorescence intensity and anisotropy on salt-induced folding.  相似文献   

19.
An emerging theme in cell biology is that cell surface receptors need to be considered as part of supramolecular complexes of proteins and lipids facilitating specific receptor conformations and distinct distributions, e.g., at the immunological synapse. Thus, a new goal is to develop bioimaging that not only locates proteins in live cells but can also probe their environment. Such a technique is demonstrated here using fluorescence lifetime imaging of green fluorescent protein (GFP). We first show, by time-correlated single-photon counting, that the fluorescence decay of GFP depends on the local refractive index. This is in agreement with the Strickler Berg formula, relating the Einstein A and B coefficients for absorption and spontaneous emission in molecules. We then quantitatively image, by wide-field time-gated fluorescence lifetime imaging, the refractive index of the environment of GFP. This novel approach paves the way for imaging the biophysical environment of specific GFP-tagged proteins in live cells.  相似文献   

20.
Physical properties of the fluorescent sterol probe dehydroergosterol   总被引:3,自引:0,他引:3  
Spectroscopic studies were performed on the fluorescent sterol probes ergosta-5,7,9(11),22-tetraen-3 beta-ol (dehydroergosterol) and cholesta-5,7,9(11)-trien-3 beta-ol (cholestatrienol). In most isotropic solvents, these molecules exhibited a single lifetime near 300 ps. Fluorescence lifetimes in 2-propanol were independent of emission wavelength and independent of excitation wavelength. Excited state behavior of these probes appears relatively simple. In isotropic solvents, dehydroergosterol fluorescence emission underwent at most a small Stokes shift as solvent polarity was modified. Time-resolved anisotropy decays indicated that dehydroergosterol decay was monoexponential, with rotational correlation times dependent on solvent viscosity. When incorporated into L-alpha-dimyristoylphosphatidylcholine liposomes at a concentration of 0.9 mol%, dehydroergosterol fluorescence lifetime decreased at the phase transition of this phospholipid indicating that the sterol probe was detecting physical changes of the bulk phospholipids. Furthermore, total fluorescence decays and anisotropy decays were sensitive to the environment of the sterol. Dehydroergosterol and cholestatrienol are thus useful probes for monitoring sterol behavior in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号