首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
白细胞介素-2镇痛功能位点的研究   总被引:1,自引:0,他引:1  
白细胞介-2(IL-2)是重要的免疫调节因子,近来发现还有中枢镇痛作用,用不同IL-2突变体测定其对大鼠痛阈的影响,发现完全丧失免疫刺激作用的20Leu-IL-2(20Asp→Leu)仍能显著提高大鼠的痛阈,其作用强度与天然IL-2无显著差异,而另一突变体45Val-IL-2(45Tyr→Val)虽保留免疫学活性却不能提高大鼠的痛阈;这些结果证明IL-2分子中具有镇痛作用与具有免疫作用与具有免疫作  相似文献   

2.
白细胞介素—2中枢镇痛作用途径的作用   总被引:2,自引:0,他引:2  
蒋春雷  徐荻 《生理学报》1996,48(3):243-248
抗IL-2受体α亚基的单克隆抗体不能阻断IL-2的中枢镇痛作用,以及丧失与IL-2受体β亚基结合能力的IL-2突变体仍具有提高大鼠阈的能力,这表明IL-2的中枢镇痛作用并不是通过IL-2受体所介导,亦表示IL-2的免疫和镇痛作用是通过不同的受体途径实现的。  相似文献   

3.
白细胞介素-2中枢镇痛作用途径的探讨   总被引:3,自引:0,他引:3  
抗IL-2受体α亚基的单克隆抗体不能阻断IL-2的中枢镇痛作用,以及丧失与IL-2受体β亚基结合能力的IL-2突变体仍具有提高大鼠痛阈的能力,这表明IL-2的中枢镇痛作用并不是通过IL-2受体所介导,亦表示IL-2的免疫和镇痛作用是通过不同的受体途径实现的。加之内源性阿片肽与IL-2分子有着共同的抗原决定基和结构相似性,提示IL-2可以与阿片受体直接结合产生中枢镇痛效应。从放射免疫法测定的IL-2侧脑室注射后不同时间大鼠脑内不同核团的内源性阿片肽含量,推测IL-2的中枢镇痛作用可能还与弓状核、室旁核、蓝斑等核团的β-EP和LEK有关。  相似文献   

4.
白细胞介素2的中枢作用   总被引:4,自引:0,他引:4  
白细胞介素2(IL-2)不仅是重要的免疫调节因子,而且具有重要的中枢调节作用。业已证实,脑内存在着IL-2和IL-2受体(IL-2R),IL-2能明显地影响神经元和神经胶质细胞的生长,并能作用于下丘脑-垂体-肾上腺轴而影响内分泌,还能对电生理、行为等产生影响。本文简述了IL-2的中枢作用。  相似文献   

5.
免疫调节因子白细胞介素-2(IL-2)具有中枢镇痛功能。实验采用基因定位突变技术,获得系列IL-2突变体,并测定其免疫学活性和镇痛能力,发现无免疫学活性的IL-2突变体20Leu-IL-2仍具有中枢镇痛能力,而44Leu-IL-2,45 Val-IL-2虽保留了免疫学活性,但其镇痛能力显著性下降或消失,阿片受体拮抗剂纳洛酮能够阻断IL-2的中枢镇痛作用,而不能影响IL-2对CTLL-2细胞的增殖作用。抗内源性阿片肽血清与IL-2能发生明显的交叉反应。实验结果提示,IL-2分子是通过由第45位Tyr残基及空间上相近的Phe残基等组成的镇痛功能位点与阿片受体相结合而发挥镇痛效应。  相似文献   

6.
白细胞介素-2的中枢镇痛作用   总被引:4,自引:0,他引:4  
本实验采用侧脑室给药,以钾离子透入法引起大鼠甩尾反应为指标,测定动物的痛阈,发现白细胞介素-2(IL-2)具有显著提高大鼠痛阈的作用,此作用能被抗IL-2单克隆抗体所阻断。纳洛酮能反转IL-2的镇痛作用,表明其作用机理与阿片受体有关。  相似文献   

7.
白细胞介素6的神经生物学效应   总被引:1,自引:0,他引:1  
自1987年以来,白细胞介素6(IL-6)的神经生物学研究日益增多,研究表明:(1)IL-6可在中枢神经系统肿瘤细胞株中表达;(2)IL-6可在中枢神经系统正常细胞中表达;(3)IL-6具有维持神经元的生存及促分化效应;(4)IL-6在神经内分泌免疫调节网络中起一定作用;(5)IL-6对下丘脑体温调节中枢具有一定的作用;(6)IL-6与中枢神经系统病毒损伤后的修复密切相关,在非感染性中枢神经系统炎症中起一定作用,与早老性痴呆的发病有关。  相似文献   

8.
根据人白细胞介素-2(IL-2)a螺旋B中氨基酸残基的空间分布选择性地突变了一些氨基酸残基,结果发现.57Gln→Gln,62Gln→Leu,62Gln→Arg和65Pro→Arg这些替换均使IL-2活性显著降低或丧失,而63Leu→Ser或64Lys→Ala对IL-2活性影响不大。从受体竞争抑制结合实验结果可知,上述不表现活性的突变体也同时丧失了与高亲和力受体的结合能力,这说明α螺旋B中这些位点对IL-2与受体结合有贡献,事实上,那些直接与受体β、γ亚基结合的残基所在螺旋为A、D螺旋而非α螺旋B,由此我们认为α螺旋B虽不直接参与与受体β、γ亚基结合,但它在空间结构上对IL-2与受体β、γ亚基的结合产生了有利的影响,而57Gln、62Gln、65Pro等残基则在此过程中发挥重要作用。  相似文献   

9.
白细胞介素-1(IL-1)是一种作用非常广泛的多肽生长因子,了解IL-1结构与功能的关系对阐明其作用是很有必要的。IL-1β含12条反向平行β折叠链,其三维结构象四面体,IL-1α的二级结构和高级结构与IL-1β相似;IL-1的一些子肽和氨基酸残基在IL-1与受体的结合和IL-1功能的发挥中起着重要作用。本主要就IL-1的二级结构与三级结构,IL-1结构与功能关系的研究进展作一简要综述。  相似文献   

10.
根据人白细胞介素-2(IL-2)α螺旋B中氨基酸残基的空间分布选择性地突变了一些氨基酸残基,结果发现:57Gln→Glu,62Glu→Leu,62Glu→Arg和65Pro→Arg这些替换均使IL-2活性显著降低或丧失,而63Leu→Ser或64Lys→Ala对IL-2活性影响不大。从受体竞争抑制结合实验结果可知,上述不表现活性的突变体也同时丧夫了与高亲和力受体的结合能力,这说明α螺旋B中这些位点  相似文献   

11.
Analgesic effect of interferon-alpha via mu opioid receptor in the rat   总被引:4,自引:0,他引:4  
Using the tail-flick induced by electro-stimulation as a pain marker, it was found that pain threshold (PT) was significantly increased after injecting interferon-alpha (IFN alpha) into the lateral ventricle of rats. This effect was dosage-dependent and abolished by monoclonal antibody (McAb) to IFN alpha. Naloxone could inhibit the analgesic effect of IFN alpha, suggesting that the analgesic effect of IFN alpha be related to the opioid receptors. Beta-funaltrexamine (beta-FNA), the mu specific receptor antagonist could completely block the analgesic effect of IFN alpha. The selective delta-opioid receptor antagonist, ICI174,864 and the kappa-opioid receptor antagonist, nor-BNI both failed to prevent the analgesic effect of IFN alpha. IFN alpha could significantly inhibit the production of the cAMP stimulated by forskolin in SK-N-SH cells expressing the mu-opioid receptor, not in NG108-15 cells expressing the delta-opioid receptor uniformly. The results obtained provide further evidence for opioid activity of IFN alpha and suggest that this effect is mediated by central opioid receptors of the mu subtype. The evidence is consistent with the hypothesis that multiple actions of cytokines, such as immunoregulatory and neuroregulatory effects, might be mediated by distinct domains of cytokines interacting with different receptors.  相似文献   

12.
Background The role of co-stimulation in CD4+ T cell activation by professional APC is well established, while less is known of the role co-stimulation plays when CD4+ T cells interact directly with tumor cells. Methods Through genetic engineering of human CD4+ T cells, we tested the hypothesis that integration of co-stimulatory signaling domains within a tumor-targeting chimeric Ag receptor (CAR), the IL-13Ralpha2-specific IL-13-zetakine (IL13zeta), would enhance CD4+ T cell mediated responses against tumors that fail to express ligands for co-stimulatory receptors. Results Compared with CD3zeta-mediated activation alone, CD4+ effector T cells expressing the IL13-CD28-41BBzeta CAR exhibited augmented/sustained MAPK and AKT activity, up-regulated Th1 cytokine production, and enhanced cytolytic potency against tumor targets. Moreover, upon recursive stimulation with tumor, the IL13-CD28-41BBzeta+ cells retained/recycled their lytic function, whereas IL-13zeta+ CD4+ cells became anergic/exhausted. These in vitro observations correlated with enhanced in vivo control of established orthotopic CNS glioma xenografts in immunodeficient mice mediated by adoptively transferred ex vivo-expanded CD4+ T cells expressing the co-stimulatory CAR. Discussion Together these studies demonstrate the importance of integrating co-stimulation with CD3zeta signaling events to activate fully CD4+ anti-tumor effector cells for sustained function in the tumor microenvironment.  相似文献   

13.
14.
The Toll/interleukin-1 receptor (TIR) domain is conserved in the intracellular regions of Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) as well as in several cytoplasmic adapter molecules. This domain has crucial roles in signal transduction by these receptors for host immune response. Here we report the crystal structure at 2.3-A resolution of the TIR domain of human IL-1RAPL, the first structure of a TIR domain of the IL-1R superfamily. There are large structural differences between this TIR domain and that of TLR1 and TLR2. Helix alphaD in IL-1RAPL is almost perpendicular to its equivalent in TLR1 or TLR2. The BB loop contains a hydrogen bond unique to IL-1RAPL between Thr residues at the 8th and 10th positions. The structural and sequence diversity among these domains may be important for specificity in the signal transduction by these receptors. A dimer of the TIR domain of IL-1RAPL is observed in the crystal, although this domain is monomeric in solution. Residues in the dimer interface are mostly unique to IL-1RAPL, which is consistent with the distinct functional roles of this receptor. Our functional studies show IL-1RAPL can activate JNK but not the ERK or the p38 MAP kinases, whereas its close homolog, TIGIRR, cannot activate JNK. Deletion mutagenesis studies show that the activation of JNK by IL-1RAPL does not depend on the integrity of its TIR domain, suggesting a distinct mechanism of signaling through this receptor.  相似文献   

15.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is a neuroimmunomodulatory peptide that is involved in the control of host responses trough modulation of production and action of proinflammatory cytokines in inflammatory cells in the periphery and within the central nervous system (CNS). However, little is known about the receptors that mediate the modulatory effects of alpha-MSH in the CNS. The objective of the present study was to establish the specific melanocortin receptors involved in the inhibition by MSH peptides of IL-1beta-induced activation of the HPA. i.c.v. injection of 12.5 ng of IL-1beta caused significant changes in plasma corticosterone, as compared to basal levels. The treatment with gamma-MSH (1 microg), an MC3 receptor agonist, resulted in significant reduction of the IL-1beta-induced plasma corticosterone levels. Administration of the MC3/MC4 receptor antagonist SHU9119 blocked this effect. Besides, treatment with a high dose of alpha-MSH (1 microg) increased plasma corticosterone. When alpha-MSH was given at a lower dose (0.1 microg), it did not modify corticosterone levels but caused an inhibitory effect on the corticosterone release induced by IL-1beta. The administration of SHU9119 or a more selective MC4 receptor antagonist like HS014 blocked the effects of alpha-MSH. In conclusion, our results suggest that both alpha-MSH and gamma-MSH are capable of inhibiting the effect of the IL-1beta on the activation of HPA axis acting at the CNS, and that this effect is mediated by specific central melanocortin receptors.  相似文献   

16.
Supernatants from a subset of helper T cell clones can enhance IgA, IgE, and IgG1 production in cultures of lipopolysaccharide-stimulated, T cell-depleted spleen cells. The lymphokine interleukin (IL)-4 has been shown to cause the IgE and IgG1 enhancement produced by these supernatants. IgA enhancement, however, is mediated by a factor distinct from IL-4, although IL-4 can potentiate the effect of the IgA-enhancing factor. IgA-enhancing factor is also distinct from IL-1, IL-2, IL-3, granulocyte-macrophage colony-stimulating factor, and interferon-gamma and acts directly on B cells. Purified IgA-enhancing factor enhances IgA production three- to sixfold yet causes less than a twofold increase in other isotypes. The IgA enhancing activity is not inhibited by concentrations of interferon-gamma that inhibit IL-4 activities. In the accompanying article, we show that this IgA enhancing activity is a novel property of the lymphokine IL-5.  相似文献   

17.
18.
2-arylpropionic acids, a well known class of non-steroidal anti-inflammatory drugs (NSAIDs), exist as a racemic mixture of their enantiomeric forms, with S-isomers primarily responsible for inhibition of prostaglandin (PG) production and of inflammatory events. In this study we show that S-isomers are also responsible for the paradoxical up-regulation of tumor necrosis factor (TNF) induced by ketoprofen, flurbiprofen and ibuprofen in murine peritoneal macrophages stimulated by bacterial endotoxin (LPS). This effect is in close correlation with cyclooxygenase inhibitory capacity of S-isomers and, from Northern blot analysis, seems to be mediated by the up-regulation of TNF mRNA. In addition, up-regulation of TNF production by S-isomers is associated with inhibition of interleukin-10 (IL-10) production. Conversely, we have observed that S-enantiomers reduce IL-6 production at a concentration 100 times higher than that able to inhibit cyclooxygenase activity. The unwanted pro-inflammatory effects of S-isomers through TNF and IL-10 production could therefore hinder their analgesic effect, that is, at least in part, related to IL-6 inhibition. In addition, TNF amplification by S-isomers could be correlated to the clinical evidence of their gastric toxicity. On the other hand, R-isomers did not affect TNF and IL-10 production even at cyclooxygenase-blocking concentration, while they reduced IL-6 production to the same levels as S-isomers. It is concluded that the regulation of cytokine production by S-isomers of 2-arylpropionic acids could partially mask their therapeutic effects and could be correlated to the clinical evidence of their higher gastric toxicity. On the other hand, IL-6 inhibition without the unwanted effects on TNF and IL-10 production shown by R-isomers could be correlated to the analgesic effect reported for R-2-arylpropionic acids.  相似文献   

19.
Microglia, macrophage-like cells in the CNS, are multifunctional cells; they play an important role in removal of dead cells or their remnants by phagocytosis in the CNS degeneration and are one of important cells in the CNS cytokine network to produce and respond to a variety of cytokines. The functions of microglia are regulated by inhibitory cytokines. We have reported the expression of interleukin (IL)-10, one of the inhibitory cytokines, and its receptor in mouse microglia; therefore, IL-10 may affect microglial functions. In this study, we investigated the effects of IL-10 on purified microglia in culture. IL-10 inhibited lipopolysaccharide-induced IL-1beta and tumor necrosis factor-alpha production, lysosomal enzyme activity, and superoxide anion production in a dose-dependent manner, but did not affect granulocyte/ macrophage colony-stimulating factor-dependent proliferation of microglia. IL-10 also decreased the expression of both IL-6 receptor and lipopolysaccharide-induced IL-2 receptor but not IL-4 receptor on microglia as measured by flow cytometric analysis with an indirect immunofluorescence technique. IL-10 also decreased mRNA expression of IL-2 and IL-6 cytokine receptors. These results suggest that IL-10 is a unique and potent inhibitory factor in the CNS cytokine network involved in decreasing the expression of cytokine receptors as well as cytokine production by microglia.  相似文献   

20.
Interleukins 9 (IL-9) and 4 are cytokines within the IL-2 receptor gamma chain (IL-2R gamma) superfamily that possess similar and unique biological functions. The signaling mechanisms, which may determine cytokine specificity and redundancy, are not well understood. IRS proteins are tyrosine-phosphorylated following IL-9 and IL-4 stimulation, a process in part mediated by JAK tyrosine kinases (Yin, T. G., Keller, S. R., Quelle, F. W., Witthuhn, B. A., Tsang, M. L., Lienhard, G. E., Ihle, J. N., and Yang, Y. C. (1995) J. Biol. Chem. 270, 20497--20502). In the present study, we used 32D cells stably transfected with insulin receptor (32D(IR)), which do not express any IRS proteins, as a model system to study the requirement of different structural domains of IRS proteins in IL-9- and IL-4-mediated functions. Overexpression of IRS-1 and IRS-2, but not IRS-4, induced proliferation of 32D(IR) cells in response to IL-9. The pleckstrin homology (PH) domain of IRS proteins is required for IRS-mediated proliferation stimulated by IL-9. The phosphotyrosine binding and Shc and IRS-1 NPXY binding domains are interchangeable for IRS to transduce the proliferative effect of IL-4. Therefore, the PH domain plays different roles in coupling IRS proteins to activated IL-9 and IL-4 receptors. The role of IRS proteins in determining cytokine specificity was corroborated by their ability to interact with different downstream signaling molecules. Although phosphatidylinositol 3' -kinase (PI3K) and Grb-2 interact with tyrosine-phosphorylated IRS proteins, Shp-2 only binds to IRS proteins following IL-4, but not IL-9, stimulation. Although PI3K activity is necessary for the IRS-1/2-mediated proliferative effect of IL-9 and IL-4, Akt activation is only required for cell proliferation induced by IL-4, but not IL-9. These data suggest that IRS-dependent signaling pathways work by recruiting different signaling molecules to determine specificity of IL-2R gamma superfamily cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号