首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated three possible causes of territory desertion among Bonelli's eagles Hieraaetus fasciatus in Murcia (southeastern Spain): low demographic parameters, low habitat quality and competition with Golden eagles Aquila chrysaetos. From 1983 to 1997, we surveyed a Bonelli's eagle population. Abandoned and occupied territories were compared to find differences in demographic parameters (flight rate, productivity and mortality) or habitat characteristics. Mortality was significantly higher in abandoned territories. Abandoned territories also had larger areas of forest and extensive agriculture, while occupied territories had more shrublands. Competition with Golden eagles was not a determinant of territorial abandonement but interacted with human persecution of the species. Management implications are discussed.  相似文献   

2.
Density‐dependent reproduction is commonly explained by either the habitat heterogeneity (HHH) or individual adjustment (IAH) hypothesis. Under the HHH, high quality territories are assumed to be occupied first. At higher density, occupation of low‐quality territories increases due to lower availability of high‐quality territories, which reduces mean reproductive success. Alternatively, the IAH assumes that increased competition at higher densities reduces reproductive success in all territories. For birds of prey, HHH plays an important role in territorial species, and IAH in socially breeding species. To test the generality of this hypothesis, we studied the mechanism behind density dependence in raven Corvus corax, a long‐lived passerine bird, using long‐term population data from a large number of territories. Population density decreased reproduction, which was explained by increased usage of low quality territories at higher density, supporting the HHH. Density reduced reproduction in low quality territories, but not in high and intermediate quality territories. We additionally compared the explanatory power of different models describing brood size, representing IAH, HHH, or a combination of both. The best model represented a combination of both hypotheses, in which the effect of density depended on territory quality. Our conclusion that both IAH and HHH are supported can be explained by the biology of ravens, where territorial adults not only experience interference competition with other territorial adults, but also with social groups of juveniles and floaters. We conclude that the relative importance of IAH and HHH may depend on variation in territory quality and social structure.  相似文献   

3.
Habitat quality is an important but insufficiently understood concept in ecology and conservation biology, due to geographic and temporal variation as well as interaction with individual quality. In 1994–2002, we studied the Estonian population of the lesser spotted eagle Aquila pomarina in order to (1) explore the relative contributions of habitat and female size in reproductive success; (2) check for a switch to alternative prey in vole‐poor years and the relevant variation in annual habitat quality as confirmed in the common buzzard Buteo buteo in the same area. We measured five landscape variables, the number of neighbouring conspecifics and the relative size of the female according to large moulted feathers in 77 nesting territories, and related this to the eagles’ productivity in vole‐rich and vole‐poor years. Nesting lesser spotted eagles benefited from heterogeneous landscapes and suffered from the neighbourhood of conspecifics. There was no evidence that different‐sized females used different habitats. In general, female size was positively related to productivity in vole‐poor but not vole‐rich years, but in the presence of competitors, large size appeared to be disadvantageous. The mean annual productivity of the eagle was well correlated with that of the buzzard, both having peaks after every three years. In contrast to the buzzard, the share of voles in the eagle's diet and its habitat quality did not differ significantly between good and poor years. We concluded that despite a superficial ecological similarity to the buzzard, the lesser spotted eagle did not behave as predicted by the alternative prey hypothesis, but the study confirmed that annual variation in prey utilization and relative habitat quality are parts of the same functional response. Non‐switching to alternative prey may be related to a historical foraging strategy, used by the eagles before they spread to agricultural landscapes, since the current effects of body size strongly suggested food shortage in vole‐poor years.  相似文献   

4.
In order for competing species to coexist, segregation on some ecological niche component is required and is often mediated by differential habitat use. When unequal competitors are involved, the dominant species tends to displace the subordinate one to its less preferred habitat. Here, we use habitat isodars, an approach which reflects evolutionary stable strategies of habitat selection, to evaluate whether interspecific competition between two competing species with distinct habitat preferences, the little bustard Tetrax tetrax and the great bustard Otis tarda, modulates their habitat use. Field data on these endangered species demonstrate that unequal competitors can coexist without completely segregating on their preferred habitats. The negatively sloped isodar of the subordinate little bustard unveils its competition with the dominant great bustard. Interference from great bustards in secondary cereal habitats reinforces use of preferred natural habitat by little bustards. Studies of density‐dependent habitat selection by a single‐species can thus aid in identifying the effects of competition on community composition, and guide the conservation of at‐risk species. Isodars, in particular, represent a promising method to gain clear knowledge on interspecific competition for species in which experimental manipulations are not feasible.  相似文献   

5.
Brood reduction, the death of one or more chicks through siblicide or starvation, can occur through density‐dependence in fecundity. Brood reduction may arise in territorial breeding systems either as a response to a high level of territorial interference in a situation of high density or as a result of habitat heterogeneity. To test the predictions of the two main hypotheses that attempt to explain how density‐dependent fecundity is generated, the Habitat Heterogeneity Hypothesis (HHH) and the Individual Adjustment Hypothesis (IAH), we analysed the relationship between density and fecundity in an expanding population of Booted Eagles in Doñana National Park, Spain, using an 18‐year data series. We also studied the occurrence and frequency of brood reduction in the same Booted Eagle population to appreciate further its effects and the factors that influence its occurrence and frequency. Our results support the HHH in the present situation of high density, as fecundity in the better territories (older and more frequently occupied) was higher than in low quality territories and was not affected by population density in high density periods. Nevertheless, the fecundity of high quality territories was affected (although not significantly) by population density in periods of low density, suggesting that the IAH was supported when only high quality territories were occupied. Older territories were used more frequently and chicks in these areas hatched earlier and suffered lower mortality than in new territories. We found a significant negative relationship between mean fecundity and its skewness, a finding that also supports HHH. During years of food shortage, less frequently occupied territories suffered higher rates of brood reduction. Brood reduction in this Booted Eagle population was a consequence of the heterogeneous structure of the habitat, with some territories having a higher probability of brood reduction than others. Parental nutritional condition did not affect brood reduction. The effect of brood reduction on nestling quality and population dynamics is also discussed.  相似文献   

6.
Habitat heterogeneity can promote coexistence between herbivores of different body size limited to different extents by resource quantity and quality. Red deer (Cervus elaphus) are known as superior competitors to smaller species with similar diets. We compared competitive interactions and habitat use between red deer and Alpine chamois (Rupicapra rupicapra) in two adjacent valleys in a strictly protected area in the Central Alps. Red deer density was higher in the valley with higher primary productivity. Only here was horn growth in kid and yearling chamois (as a measure for body condition) negatively correlated with red deer population size, suggesting interspecific competition, and chamois selected meadows with steeper slopes and lower productivity than available on average. Conversely, red deer selected meadows of high productivity, particularly in the poorer area. As these were located mainly at lower elevations, this led to strong altitudinal segregation between the two species here. Local differences in interspecific competition thus coincided with differences in habitat preference and–segregation between areas. This suggests that spatial habitat and resource heterogeneity at the scale of adjacent valleys can provide competition refuges for competitively inferior mountain ungulates which differ from their superior competitor in their metabolic requirements.  相似文献   

7.
Although metapopulation dynamics have become the focus of considerable theoretical research, little attention has been paid to its role when examining the coexistence of species. When two or more species live in the same patch network, interspecific interactions may affect their dispersal, colonization and extinction rates, and it may be possible to incorporate competition affecting these parameters in metapopulation models. Here, we extend the territorial occupancy model proposed by Lande to competing species. Our model estimates an equilibrium proportion of habitat occupancy as a function of life‐history parameters, dispersal behavior, habitat suitability and interspecific interactions. Moreover, it could prove to be useful as a tool in the assessment of potential management decisions. We apply the model to the golden Aquila chrysaetos and the Bonelli's eagle Hieraaetus fasciatus, two territorial raptors that coexist in the Mediterranean region, sharing food and nesting habitats. Over the last twenty years, while the golden eagle has maintained and, in some cases, increased its breeding numbers, Bonelli's eagle has suffered a marked decline, with many territories abandoned by the latter now occupied by the former. This suggests that the dynamics of these species could be influenced by interspecific competition. The model identified the relative importance of competition (stable equilibrium that allows long‐term coexistence) and predicted that, when habitat overlap is slight as in the study area, intraspecific dynamics are much more important for the persistence of each species than interspecific ones. Our results suggest that the improvement of territorial bird survival and productivity are the most urgently needed actions to be undertaken in the case of the golden eagle, while for Bonelli's eagle efforts should be focused on improving territorial and non‐territorial bird survival. As habitat conservation measures, the proportion of suitable exclusive habitat should be increased for both species.  相似文献   

8.
Two hypotheses have been proposed to link population regulation to density‐dependent changes in demographical parameters: the habitat heterogeneity hypothesis (HHH) states that, as population density rises, an increasing proportion of individuals are forced to occupy low‐quality territories, which provokes a decline in average per‐capita survival and/or productivity although some individuals show no decline in fecundity; and the individual adjustment hypothesis (IAH), which suggests that increased densities lead to reductions in survival and/or fecundity by enhancing agonistic interactions, which affect all individuals to a similar extent. However, density‐dependent effects can be affected by density‐independent factors (DIF), such as weather. We test the effects of density dependence on annual reproductive success in Griffon Vultures Gyps fulvus at four spatial scales, nest‐site, cliff, colony and metacolony, in northern Spain from 2008 to 2015. Our results showed most support for the HHH at all scales. At the colony and cliff scale, IAH and DIF had similar importance, whereas there was little evidence of IAH at the metacolony and the nest scale. The best protected eyries (caves, potholes and sheltered ledges) produced the most fledglings and were used preferentially, whereas low‐quality eyries (exposed ledges or open crevices) were used only when the number of breeders increased. The significant interaction between breeding failure and density found for the more exposed eyries suggests that at higher densities, breeding pairs are forced to use poorer nesting areas, and the negative effect of density at the cliff scale could be due to the combined effect of a higher proportion of pairs using low‐quality eyries and the negative effect of rainfall.  相似文献   

9.
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low‐virulent microsporidian parasite decreased in low, but not in high‐host‐diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality‐dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population‐level effects.  相似文献   

10.
If individuals of the same population inhabit territories different in landscape structure and composition, experiencing habitat-specific demographic rates, then the landscape features become major determinants of the overall population characteristics. Few studies have tested how habitat-specific demography interacts with landscape heterogeneity to affect populations of territorial species. Here we report a 29-year study of an eagle owl (Bubo bubo) population in southern France. The aim of this study was to analyse how habitat heterogeneity could affect density and breeding performance. Mean productivity for the overall sample was 1.69±0.76 fledglings per breeding pair and, after controlling for year effect, significant differences between territories were detected for productivity. A positive correlation was found between the percentage of pairs producing 50% of the annual fledged young (an index of the distribution of fecundity among nesting territories) and the mean reproductive outputs, that is the heterogeneous structure of the population determined that most/all pairs contributed to the annual production of young during good years, but the opposite during poor years (i.e. fewer pairs produced the majority of fledglings). Mean reproductive output was positively affected by percentage of open country and diet richness. Although other factors different to territory quality could affect demography parameters (e.g. quality of breeders), our results clearly showed a significant correlation between landscape features and population productivity.  相似文献   

11.
1. Predation risk affects interspecific competition by decreasing foraging activity and relative competitive ability. Predation risk is determined by predators' prey choice and prey responses, both of which can be influenced by temperature. Temperature is especially important for larval prey and can result in a trade‐off between predator‐induced decreases in foraging activity and growth. Interspecific competition must also be examined in relation to intraspecific density‐dependent competition; weaker interspecific competition leads to coexistence of competitors. 2. This study explored how temperature (15 and 25 °C) could affect a focal species, larvae of the mosquito Culex quinquefasciatus, by examining prey choice in a shared predator (mosquitofish; Gambusia holbrooki) and the effects of predation risk on interspecific competition with Limnodynastes peronii tadpoles. Intraspecific density‐dependent competition in C. quinquefasciatus at these temperatures was also examined. 3. At 25 °C, G. holbrooki consumption of both C. quinquefasciatus and L. peronii increased; however, the effects of interspecific competition on mosquito survival did not decrease with L. peronii exposure to predation risk. The relationship between intraspecific density‐dependent competition and interspecific competition was temperature‐dependent, with competitive dominance of L. peronii at 25 °C. Male and female mosquitoes had different temperature‐dependent responses, indicating sex‐specific intrinsic responses to starvation and differential selection pressures. At 25 °C, females were susceptible to interspecific competition by L. peronii, while males were susceptible to intraspecific competition. 4. The use of competitors as biological controls has implications for mosquito disease transmission, and these results suggest that control effectiveness may be modified by climate change.  相似文献   

12.
Many of the UK’s seabird species have displayed high variation in breeding success since the 1980s, largely due to changes in the availability of Lesser Sandeels Ammodytes marinus, their main prey. During this time, Arctic Skuas Stercorarius parasiticus experienced a rapid decline in the UK and the species has subsequently been placed on the Red List of birds of conservation concern. Although shortage of Lesser Sandeels is likely to be an influential factor, the Arctic Skua’s breeding range overlaps with that of the Great Skua Stercorarius skua, a larger bird with a more varied diet, and interspecific interactions for nesting habitat may exert an additional pressure on Arctic Skua breeding populations. Results from four censuses, spanning 21 years, were used to model habitat use and analyse distributional change in nesting Arctic Skuas at a major colony located on Fetlar, Shetland, Scotland. The decline in Arctic Skuas was not uniform across the island and competition with Great Skuas for nest‐sites appears to have influenced localized breeding distribution. By 2006, Arctic Skuas had been almost entirely excluded from shrub heath, blanket bog and coastal heath habitats, which were identified as preferred habitat in 1986. In 2006, Arctic Skua breeding territories were mainly restricted to one core area of preferred habitat where over 90% nested in high density as this habitat became increasingly occupied by Great Skuas. The more generalist foraging habit of the Great Skua allowed the population to grow rapidly as numbers of the more specialist Arctic Skua decreased during times of low sandeel availability. Our model suggests that both interspecific competition for territories with Great Skuas and food limitation have played important roles in the decline of Arctic Skuas on Fetlar.  相似文献   

13.
Density‐dependent effects on reproduction can arise through variation in habitat quality or increased competition and interference among neighbours. Negative effects have been found in avian populations and these have been mainly attributed to food limitations. In this study, we investigated whether density‐dependent effects could result from either heterogeneity in habitat suitability, interference among neighbours, or predation. To test these hypotheses, we collected data over eight years in a growing population of temperate‐nesting Canada geese Branta canadensis maxima. We compared different parameters of nesting success of geese between two sites characterized by different nest densities and looked at the effects of nest proximity on these parameters within each site. At the landscape level, we found density‐dependent effects due to variation in habitat quality associated with predation probabilities and flooding events. At a finer scale, nesting success declined with proximity to neighbours, probably due to increased aggressive interactions among pairs. However, complete clutch predation showed both positive and negative density‐dependence, due to differences in predator community at each site. We concluded that density‐dependent effects reduced nesting success of Canada geese through both heterogeneity in habitat safety and agonistic interference between neighbours but that density‐dependent effects could also be positive in some instances.  相似文献   

14.
As sea levels rise, birds nesting in coastal marshes will be particularly vulnerable to increased tidal inundation. Understanding how marsh birds select their nesting habitat along the elevational gradient of these marshes will provide insight into how these species might be affected by rising sea levels. Clapper Rails (Rallus crepitans) are coastal marsh‐nesting birds whose nests are vulnerable to flooding, but it is not clear if they select for habitat along the elevational gradient or only use other habitat cues. Our objective was to determine if Clapper Rails select higher‐elevation nest sites, while also controlling for selection of other habitat variables at both landscape and territory levels, by comparing nest habitat to habitat in other areas of territories and at random points in the marsh landscape. At the landscape level, Clapper Rails did not exhibit selection for the elevational gradient, with nests and random points at similar elevations. At the territory level, however, nest‐site selection was most influenced by elevation and plant height, with Clapper Rails selecting nest sites with higher elevations and in areas with taller plants. However, the strength of the elevation effect was uncertain, suggesting the importance of precise elevation measurements in the field. Given this selection for higher‐elevation nest sites, Clapper Rails may be somewhat resilient to increased tidal inundation. However, the potential for increased intra‐ and interspecific competition for high‐elevation marshes should make conservation of these habitats a priority.  相似文献   

15.
We report on an 11‐year study of floater interference in a population of Spanish Imperial Eagles Aquila adalberti. We analysed changes over the years in the productivity of 15 territories to test predictions of two hypotheses of density‐dependent productivity in relation to the presence of floaters (birds without territories). According to the ‘interference' hypothesis, the frequency of intrusion by floaters increases with density, resulting in a decrease in productivity. Thus, in a high‐density population a negative relationship between floater intrusions and productivity of the territory is expected. In contrast, under the ‘habitat heterogeneity' hypothesis, as density increases a higher proportion of individuals is forced to occupy lower quality habitats. Support of this hypothesis requires that floaters detect differences in quality among territories and preferentially visit the better quality territories. Consequently, a positive relationship between floater intrusions and productivity is expected. Results showed that floaters tended to visit their natal area at the beginning of the breeding season. Among floater Eagles, males made significantly more intrusions per day than did females, but females stayed in the natal population for longer each year than males. Floater intrusions and productivity were highly positively correlated, supporting the ‘habitat heterogeneity' hypothesis; individuals were apparently able to assess the quality of a territory and, at the frequencies observed, their interference with the breeding pair had no obvious negative effect on productivity.  相似文献   

16.
Identifying attributes associated with good breeding habitat is critical for understanding animal population dynamics. However, the association between environmental heterogeneity and breeding probability has been often overlooked in habitat analyses. We evaluated habitat quality in a metapopulation of the endangered Iberian lynx Lynx pardinus by analyzing spatiotemporal patterns in breeding records. Data summarizing successful production of litters after emergence from dens over four years within 13 lynx territories were examined. We designed a set of generalized linear mixed models representing different hypotheses regarding how patterns in breeding records relate to environmental heterogeneity. Environmental heterogeneity was described by two characteristics: 1) a landscape index measured in lynx territories indicative of time‐averaged prey availability and 2) yearly variability in prey abundance not captured with this index. By including the random effect of the lynx territory we also accounted for other territory‐specific effects on reproduction. We found significant differences in yearly prey density dynamics among lynx territories. However, temporal variation in prey density contributed poorly to explaining lynx breeding. The most parsimonious model included the landscape structure as the only effect explaining breeding patterns. A multinomial‐model‐representation of the landscape hypothesis explained nearly 50% of variability in breeding records. Results pointed to the existence of a habitat quality gradient associated with particular landscape structures influencing lynx habitat selection and breeding performance. Underlying this gradient was time‐averaged prey availability. Probably as a result of long‐term fitness strategies in long‐lived territorial species, the short‐term fluctuations in prey availability had a minor influence. Our results illustrate how habitat inferences can be enhanced by incorporating the link between spatiotemporal patterns in reproduction and environmental heterogeneity.  相似文献   

17.
Unravelling the contributions of density‐dependent and density‐independent factors in determining species population dynamics is a challenge, especially if the two factors interact. One approach is to apply stochastic population models to long‐term data, yet few studies have included interactions between density‐dependent and density‐independent factors, or explored more than one type of stochastic population model. However, both are important because model choice critically affects inference on population dynamics and stability. Here, we used a multiple models approach and applied log‐linear and non‐linear stochastic population models to time series (spanning 29 years) on the population growth rates of Blue Tits Cyanistes caeruleus, Great Tits Parus major and Pied Flycatchers Ficedula hypoleuca breeding in two nestbox populations in southern Germany. We focused on the roles of climate conditions and intra‐ and interspecific competition in determining population growth rates. Density dependence was evident in all populations. For Blue Tits in one population and for Great Tits in both populations, addition of a density‐independent factor improved model fit. At one location, Blue Tit population growth rate increased following warmer winters, whereas Great Tit population growth rates decreased following warmer springs. Importantly, Great Tit population growth rate also decreased following years of high Blue Tit abundance, but not vice versa. This finding is consistent with asymmetric interspecific competition and implies that competition could carry over to influence population dynamics. At the other location, Great Tit population growth rate decreased following years of high Pied Flycatcher abundance but only when Great Tit population numbers were low, illustrating that the roles of density‐dependent and density‐independent factors are not necessarily mutually exclusive. The dynamics of this Great Tit population, in contrast to the other populations, were unstable and chaotic, raising the question of whether interactions between density‐dependent and density‐independent factors play a role in determining the (in) stability of the dynamics of species populations.  相似文献   

18.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

19.
1. We report on a simulation study of increasing and stable populations working under two different hypotheses of density dependence of fecundity: the habitat heterogeneity hypothesis (HHH) and the individual adjustment hypothesis (IAH). Our aim is to find critical differences between the two regulatory hypotheses in natural populations. 2. Populations under HHH show a strong negative relationship between fecundity and the coefficient of variation of fecundity. We also found a strong negative relationship between fecundity and skewness, demonstrating that, as fecundity decreases, the form of the distribution of brood sizes changes, being more left-skewed due to more territories failing to produce any offspring. 3. This strong relationship was found only in the simulations of populations under HHH; whether increasing or stable, and under different ratios of good: poor territories and different population sizes. In contrast, no relationship between mean fecundity and skewness was found among simulations under IAH. 4. Populations under IAH also showed a significant relationship between mean fecundity and the coefficient of variation of fecundity, but with a lower slope than in populations under HHH. 5. In conclusion, skewness was found to be an adequate critical test that showed significant and strong relationships with mean fecundity only in populations under HHH, whether increasing or stable. This test is useful for species with a discrete distribution of offspring with a small number of integer categories, including most of the bird and mammal species.  相似文献   

20.
Understanding the mechanisms that shape density‐dependent processes and population dynamics is often essential for species conservation. Two key mechanisms of density‐dependent reductions in reproductive performance are a limited access to foraging habitats (the habitat heterogeneity hypothesis) and territorial aggression towards conspecifics (the interference competition hypothesis) at high population densities. Disentangling the relative importance of these mechanisms within populations below their carrying capacity is important for the evaluation of the success of conservation measures. However, relatively few studies have attempted to quantify the relative importance of both mechanisms for the reproductive performance of a population. Many raptor populations are ideal model systems to investigate density‐dependent effects because they are currently recovering from human‐induced reductions during the last decades. Using a 14‐year dataset, we combined analyses of individual reproductive performance with a mechanistic population model to investigate early signs of density‐dependent regulation in a population of White‐tailed Eagles Haliaeetus albicilla in north‐east Germany. We found a negative effect of the number of neighbouring breeding pairs and a positive effect of water surface area (as a proxy for the availability of favourable foraging habitat) on breeding success and on the average number of nestlings. The mean nearest neighbour distance between breeding pairs has decreased, and the mean distance of nests to the nearest water body has increased over the last 14 years. Moreover, the population model indicates that even though the population is still growing, carrying capacity could be reached at about 500–950 territorial pairs. These results suggest that the selection of nesting sites is determined by a trade‐off between the distance to favourable foraging habitat and the distance to neighbouring breeding pairs. To avoid increasing competition with conspecifics, due to continued population growth, breeding pairs seem to select increasingly suboptimal habitats. Therefore, our results suggest that the habitat heterogeneity and interference competition hypotheses are not necessarily mutually exclusive as mechanisms of density‐dependent population regulation, but can determine the reproductive performance of a raptor population simultaneously. Thus, a future decline in breeding success does not necessarily reflect a decrease in habitat quality but may rather be a consequence of density‐dependent mechanisms. This information may be useful for the interpretation of population trends and for the development of appropriate management strategies for recovering raptor populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号