首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae exhibits polarized growth during two phases of its life cycle, budding and mating. The site for polarization during vegetative growth is determined genetically: a and alpha haploid cells exhibit an axial budding pattern, and a/alpha diploid cells exhibit a bipolar pattern. During mating, each cell polarizes towards its partner to ensure efficient mating. SPA2 is required for the bipolar budding pattern (Snyder. M 1989. J. Cell Biol. 108:1419-1429; Zahner, J.A., H.A. Harkins, and J.R. Pringle. 1996. Mol. Cell. Biol. 16:1857-1870) and polarization during mating (Snyder, M., S. Gehrung, and B.D. Page. 1991. J. Cell Biol. 114: 515-532). We previously identified mutants defective in PEA2 and SPA2 which alter cell polarization in the presence of mating pheromone in a similar manner (Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Genetics, 136:1287-1297). Here we report the further characterization of these mutants. We have found that PEA2 is also required for the bipolar budding pattern and that it encodes a novel protein with a predicted coiled-coil domain. Pea2p is expressed in all cell types and is localized to sites of polarized growth in budding and mating cells in a pattern similar to Spa2p, Pea2p and Spa2p exhibit interdependent localization: Spa2p is produced in pea2 mutants but fails to localize properly; Pea2p is not stably produced in spa2 mutants. These results suggest that Pea2p and Spa2p function together as a complex to generate the bipolar budding pattern and to guarantee proper polarization during mating.  相似文献   

2.
《The Journal of cell biology》1995,131(6):1529-1538
To identify new genes involved in the control of cell morphogenesis in the fission yeast Schizosaccharomyces pombe we have visually screened for temperature-sensitive mutants that show defects in cell morphology. We have isolated and characterized 64 mutants defining 19 independent genes, 10 of which have not been previously described. One class of mutants, defining 12 orb genes, become round and show a complete loss of cell polarity. A second class of mutants exhibits branched or bent morphologies. These mutants show defects in either selection of the growth site, defining two tea genes, or in the maintenance of growth direction, defining five ban genes. Immunofluorescence analysis of these morphological mutants shows defects in the organization of the microtubule and actin cytoskeleton. These defects include shortened, bundled, and asymmetrically localized microtubules and enlarged and mislocalized actin patches. Analysis of the mutant phenotypes has allowed us to order the genes into four groups according to their function during the cell cycle: genes required for the maintenance of cell polarity throughout the cell cycle; genes necessary only for the reestablishment of cell polarity after mitosis and not for maintaining cell polarity once it is established; genes essential for the transition from monopolar to bipolar growth and genes that severe as ''polarity markers''.  相似文献   

3.
Haploid Saccharomyces cerevisiae cells find each other during conjugation by orienting their growth toward each other along pheromone gradients (chemotropism). However, when their receptors are saturated for pheromone binding, yeast cells must select a mate by executing a default pathway in which they choose a mating partner at random. We previously demonstrated that this default pathway requires the SPA2 gene. In this report we show that the default mating pathway also requires the AXL1, FUS1, FUS2, FUS3, PEA2, RVS161, and BNI1 genes. These genes, including SPA2, are also important for efficient cell fusion during chemotropic mating. Cells containing null mutations in these genes display defects in cell fusion that subtly affect mating efficiency. In addition, we found that the defect in default mating caused by mutations in SPA2 is partially suppressed by multiple copies of two genes, FUS2 and MFA2. These findings uncover a molecular relationship between default mating and cell fusion. Moreover, because axl1 mutants secrete reduced levels of a-factor and are defective at both cell fusion and default mating, these results reveal an important role for a-factor in cell fusion and default mating. We suggest that default mating places a more stringent requirement on some aspects of cell fusion than does chemotropic mating.  相似文献   

4.
Cell polarization involves specifying an area on the cell surface and organizing the cytoskeleton towards that landmark. The mechanisms by which external signals are translated into internal landmarks for polarization are poorly understood. The yeast Saccharomyces cerevisiae exhibits polarized growth during mating: the actin cytoskeleton of each cell polarizes towards its partner, presumably to allow efficient cell fusion. The external signal which determines the landmark for polarization is thought to be a gradient of peptide pheromone released by the mating partner. Here we described mutants that exhibit random polarization. Using two assays, including a direct microscope assay for orientation (Segall, J. 1993. Proc. Natl. Acad. Sci. USA. 90:8332- 8337), we show that these mutants cannot locate the source of a pheromone gradient although they are able to organize their cytoskeleton. These mutants appear to be defective in mating because they are unable to locate the mating partner. They carry mutations of the FAR1 gene, denoted far1-s, and identify a new function for the Far1 protein. Its other known function is to promote cell cycle arrest during mating by inhibiting a cyclin-dependent kinase (Peter, M., and I. Herskowitz. 1994. Science (Wash. DC). 265:1228-1232). The far1-s mutants exhibit normal cell cycle arrest in response to pheromone, which suggests that Far1 protein plays two distinct roles in mating: one in cell cycle arrest and the other in orientation towards the mating partner.  相似文献   

5.
Upon exposure to mating pheromone, yeast cells change their form to pear-shaped shmoos. We looked at pheromone-dependent cell shape changes in mutants that are unable to orient growth during mating and unable to choose a bud site. In these double mutants, cell surface growth, secretion sites, cytoskeleton, and pheromone receptors are spread out, explaining why these cells are round. In contrast, polarity establishment proteins localize to discrete sites in these mutants. However, the location of these sites wanders. Thus, these mutants are able to initiate polarized growth but fail to maintain the location of growth sites. Our results demonstrate that stabilization of the growth axis requires positional signaling from either the pheromone receptor or specific bud site selection proteins.  相似文献   

6.
During conjugation, haploid S. cerevisiae cells find one another by polarizing their growth toward each other along gradients of pheromone (chemotropism). We demonstrate that yeast cells exhibit a second mating behavior: when their receptors are saturated with pheromone, wild-type a cells execute a default pathway and select a mate at random. These matings are less efficient than chemotropic matings, are induced by the same dose of pheromone that induces shmoo formation, and appear to use a site near the incipient bud site for polarization. We show that the SPA2 gene is specifically required for the default pathway: spa2 delta mutants cannot mate if pheromone concentrations are high and gradients are absent, but can mate if gradients are present. ste2 delta, sst2 delta, and far1 delta mutants are chemotropism-defective and therefore must choose a mate by using a default pathway; consistent with this deduction, these strains require SPA2 to mate. In addition, our results suggest that far1 mutants are chemotropism-defective because their mating polarity is fixed at the incipient bud site, suggesting that the FAR1 gene is required for inhibiting the use of the incipient bud site during chemotropic mating. These observations reveal a molecular relationship between the mating and budding polarity pathways.  相似文献   

7.
During mating, budding yeast cells reorient growth toward the highest concentration of pheromone. Bni1p, a formin homologue, is required for this polarized growth by facilitating cortical actin cable assembly. Fus3p, a pheromone-activated MAP kinase, is required for pheromone signaling and cell fusion. We show that Fus3p phosphorylates Bni1p in vitro, and phosphorylation of Bni1p in vivo during the pheromone response is dependent on Fus3p. fus3 mutants exhibited multiple phenotypes similar to bni1 mutants, including defects in actin and cell polarization, as well as Kar9p and cytoplasmic microtubule localization. Disruption of the interaction between Fus3p and the receptor-associated Galpha subunit caused similar mutant phenotypes. After pheromone treatment, Bni1p-GFP and Spa2p failed to localize to the cortex of fus3 mutants, and cell wall growth became completely unpolarized. Bni1p overexpression suppressed the actin assembly, cell polarization, and cell fusion defects. These data suggest a model wherein activated Fus3p is recruited back to the cortex, where it activates Bni1p to promote polarization and cell fusion.  相似文献   

8.
P Zarzov  C Mazzoni    C Mann 《The EMBO journal》1996,15(1):83-91
The SLT2(MPK1) mitogen-activated protein kinase signal transduction pa thway has been implicated in several biological processes in Saccharomyces cerevisiae, including the regulation of cytoskeletal and cell wall structure, polarized cell growth, and response to nutrient availability, hypo-osmotic shock and heat shock. We examined the conditions under which the SLT2 pathway is activated. We found that the SLT2 kinase is tyrosine phosphorylated and activated during periods in which yeast cells are undergoing polarized cell growth, namely during bud formation of vegetative cell division and during projection formation upon treatment with mating pheromone. BCK1(SLK1), a MEK kinase, is required for SLT2 activation in both of these situations. Upstream of BCK1(SLK1), we found that the STE20 kinase was required for SLT2 activation by mating pheromone, but was unnecessary for its activation during the vegetative cell cycle. Finally, SLT2 activation during vegetative growth was partially dependent on CDC28 in that the stimulation of SLT2 tyrosine phosphorylation was significantly reduced directly after a temperature shift in cdc28 ts mutants. Our data are consistent with a role for SLT2 in promoting polarized cell growth.  相似文献   

9.
Conditional mutations in the genes CDC36 and CDC39 cause arrest in the G1 phase of the Saccharomyces cerevisiae cell cycle at the restrictive temperature. We present evidence that this arrest is a consequence of a mutational activation of the mating pheromone response. cdc36 and cdc39 mutants expressed pheromone-inducible genes in the absence of pheromone and conjugated in the absence of a mating pheromone receptor. On the other hand, cells lacking the G beta subunit or overproducing the G alpha subunit of the transducing G protein that couples the receptor to the pheromone response pathway prevented constitutive activation of the pathway in cdc36 and cdc39 mutants. These epistasis relationships imply that the CDC36 and CDC39 gene products act at the level of the transducing G protein. The CDC36 and CDC39 gene products have a role in cellular processes other than the mating pheromone response. A mating-type heterozygous diploid cell, homozygous for either the cdc36 or cdc39 mutation, does not exhibit the G1 arrest phenotype but arrests asynchronously with respect to the cell cycle. A similar asynchronous arrest was observed in cdc36 and cdc39 cells where the pheromone response pathway had been inactivated by mutations in the transducing G protein. Furthermore, cdc36 and cdc39 mutants, when grown on carbon catabolite-derepressing medium, did not arrest in G1 and did not induce pheromone-specific genes at the restrictive temperature.  相似文献   

10.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

11.
12.
Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization.  相似文献   

13.
14.
Temperature-sensitive mutants which arrest in the G1 phase of the cell cycle have been described for the yeast Saccharomyces cerevisiae. One class of these mutants (carrying cdc28, cdc36, cdc37, or cdc39) forms a shmoo morphology at restrictive temperature, characteristic of mating pheromone-arrested wild-type cells. Therefore, one hypothesis to explain the control of cell division by mating factors states that mating pheromones arrest wild-type cells by inactivating one or more of these CDC gene products. A class of mutants (carrying ste4, ste5, ste7, ste11, or ste12) which is insensitive to mating pheromone and sterile has also been described. One possible function of the STE gene products is the inactivation of the CDC gene products in the presence of a mating pheromone. A model incorporating these two hypotheses predicts that such STE gene products will not be required for mating in strains carrying an appropriate cdc lesion. This prediction was tested by assaying the mating abilities of double mutants for all of the pairwise combinations of cdc and ste mutations. Lesions in either cdc36 or cdc39 suppressed the mating defect due to ste4 and ste5. Allele specificity was observed in the suppression of both ste4 and ste5. The results indicate that the CDC36, CDC39, STE4, and STE5 gene products interact functionally or physically or both in the regulation of cell division mediated by the presence or absence of mating pheromones. The cdc36 and cdc39 mutations did not suppress ste7, ste11, or ste12. Lesions in cdc28 or cdc37 did not suppress any of the ste mutations. Other models of CDC and STE gene action which predicted that some of the cdc and ste mutations would be alleles of the same locus were tested. None of the cdc mutations was allelic to the ste mutations and, therefore, these models were eliminated.  相似文献   

15.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

16.
In the best understood models of eukaryotic directional sensing, chemotactic cells maintain a uniform distribution of surface receptors even when responding to chemical gradients. The yeast pheromone receptor is also uniformly distributed on the plasma membrane of vegetative cells, but pheromone induces its polarization into “crescents” that cap the future mating projection. Here, we find that in pheromone-treated cells, receptor crescents are visible before detectable polarization of actin cables and that the receptor can polarize in the absence of actin-dependent directed secretion. Receptor internalization, in contrast, seems to be essential for the generation of receptor polarity, and mutations that deregulate this process confer dramatic defects in directional sensing. We also show that pheromone induces the internalization and subsequent polarization of the mating-specific Gα and Gβ proteins and that the changes in G protein localization depend on receptor internalization and receptor–Gα coupling. Our data suggest that the polarization of the receptor and its G protein precedes actin polarization and is important for gradient sensing. We propose that the establishment of receptor/G protein polarity depends on a novel mechanism involving differential internalization and that this serves to amplify the shallow gradient of activated receptor across the cell.  相似文献   

17.
Mutations in either the CDC36 or CDC39 gene cause yeast cells to arrest in G1 of the cell cycle at the same point as treatment with mating pheromone. We demonstrate here that strains harboring temperature-sensitive mutations in CDC36 or CDC39 activate expression of the pheromone-inducible gene FUS1 when shifted to nonpermissive temperature. We show further that cell-cycle arrest and induction of FUS1 are dependent on known components of the mating factor response pathway, the STE genes. Thus, the G1-arrest phenotype of cdc36 and cdc39 mutants results from activation of the mating factor response pathway. The CDC36 and CDC39 gene products behave formally as negative elements in the response pathway: they are required to block response in the absence of pheromone. Epistasis analysis of mutants defective in CDC36 or CDC39 and different STE genes demonstrates that activation requires the response pathway G protein and suggests that CDC36 and CDC39 products may control synthesis or function of the G alpha subunit.  相似文献   

18.
A genetic selection in Saccharomyces cerevisiae for mutants that stimulate the mating pathway uncovered a mutant that had a hyperactive pheromone response pathway and also had hyperpolarized growth. Cloning and segregation analysis demonstrated that BUD14 was the affected gene. Disruption of BUD14 in wild-type cells caused mild stimulation of pheromone response pathway reporters, an increase in sensitivity to mating factor, and a hyperelongated shmoo morphology. The bud14 mutant also had hyperfilamentous growth. Consistent with a role in the control of cell polarity, a Bud14p-green fluorescent protein fusion was localized to sites of polarized growth in the cell. Bud14p shared morphogenetic functions with the Ste20p and Bni1p proteins as well as with the type 1 phosphatase Glc7p. The genetic interactions between BUD14 and GLC7 suggested a role for Glc7p in filamentous growth, and Glc7p was found to have a positive function in filamentous growth in yeast.  相似文献   

19.
Cell fusion during yeast mating provides a model for signaling-controlled changes at the cell surface. We identified the AXL1 gene in a screen for genes required for cell fusion in both mating types during mating. AXL1 is a pheromone-inducible gene required for axial bud site selection in haploid yeast and for proteolytic maturation of a-factor. Two other bud site selection genes, RSR1, encoding a small GTPase, and BUD3, were also required for efficient cell fusion. Based on double mutant analysis, AXL1 in a MATα strain acted genetically in the same pathway with FUS2, a fusion-dedicated gene. Electron microscopy of axl1, rsr1, and fus2 prezygotes revealed similar defects in nuclear migration, vesicle accumulation, cell wall degradation, and membrane fusion during cell fusion. The axl1 and rsr1 mutants exhibited defects in pheromone-induced morphogenesis. AXL1 protease function was required in MATα strains for fusion during mating. The ability of the Rsr1p GTPase to cycle was required for efficient cell fusion, as it is for bud site selection. During conjugation, vegetative functions may be redeployed under the control of pheromone signaling for mating purposes. Since Rsr1p has been reported to physically associate with Cdc24p and Bem1p components of the pheromone response pathway, we suggest that the bud site selection genes Rsr1p and Axl1p may act to mediate pheromone control of Fus2p-based fusion events during mating.  相似文献   

20.
S Erdman  M Snyder 《Genetics》2001,159(3):919-928
Haploid cells of the budding yeast Saccharomyces cerevisiae respond to mating pheromones by arresting their cell-division cycle in G1 and differentiating into a cell type capable of locating and fusing with mating partners. Yeast cells undergo chemotactic cell surface growth when pheromones are present above a threshold level for morphogenesis; however, the morphogenetic responses of cells to levels of pheromone below this threshold have not been systematically explored. Here we show that MATa haploid cells exposed to low levels of the alpha-factor mating pheromone undergo a novel cellular response: cells modulate their division patterns and cell shape, forming colonies composed of filamentous chains of cells. Time-lapse analysis of filament formation shows that its dynamics are distinct from that of pseudohyphal growth; during pheromone-induced filament formation, daughter cells are delayed relative to mother cells with respect to the timing of bud emergence. Filament formation requires the RSR1(BUD1), BUD8, SLK1/BCK1, and SPA2 genes and many elements of the STE11/STE7 MAP kinase pathway; this response is also independent of FAR1, a gene involved in orienting cell polarization during the mating response. We suggest that mating yeast cells undergo a complex response to low levels of pheromone that may enhance the ability of cells to search for mating partners through the modification of cell shape and alteration of cell-division patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号