首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical syntheses of a number of C27 ring C oxygenated sterols have been pursued to permit evaluation of their activity in the inhibition of sterol biosynthesis in cultured mammalian cells. Thus, 5 alpha-cholest-7-ene-3 beta, 11 alpha-diol, 3 alpha-hydroxy-5 alpha-cholest-9(11)-en-12-one, and the previously unreported 11 alpha-hydroxy-5 alpha-cholest-7-en-3-one, 5 alpha-cholest-9(11)-ene-3,12-dione, and 3 beta-hydroxy-5 alpha-cholest-9 (11)-en-12-one have been synthesized. The effects of these compounds on the synthesis of digitonin-precipitable sterols from labeled acetate in mouse L cells and on the levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in the same cells have been investigated and compared with previously published data on other ring C oxygenated sterols. 5 alpha-Cholest-7-ene-3 beta, 11 alpha-diol was shown to be the most potent inhibitor of sterol synthesis.  相似文献   

2.
The spores of Fusarium solani reduced the C(2)-carbonyl group, 1-dehydrogenated ring "A" and cleaved the side chain of 16alpha, 17alpha-oxidopregn-4-ene-3, 20-dione (16alpha, 17alpha-oxidoprogesterone)(I) to give the following products: 20alpha-hydroxy-16alpha, 17alpha-oxidopregn-4-en-3-one(II); 20alpha-hydroxy-16alpha, 17alpha-oxidopregna-1, 4-dien-3-one(III); 16alpha-hydroxy-17a-oxa-androsta-1, 4-diene-3, 17-dione (16alpha-hydroxy-1-dehydrotestololactone)(IV); and 16alpha, 17beta-dihydroxy-androsta-1, 4-dien-3-one (16alpha-hydroxy-1-dehydrotestosterone)(V). When II was used as a substrate, it was metabolized into III, IV, and V at a slower rate than I. Furthermore, 16alpha-hydroxy-androst-4-ene-3, 17-dione (16alpha-hydroxyandrostenedione)(X) was transformed into IV and V. Pregn-4-ene-3, 20-dione (progesterone)(XII) was transformed into androsta-1, 4-diene-3, 17-dione (androstadienedione)(VIII) and 17a-oxa-androsta-1, 4-diene-3, 17-dione (1-dehydrotestololactone)(IX), while 17alpha-hydroxy-pregn-4-ene-3, 20-dione (17alpha-hydroxyprogesterone)(VI) was converted into its 1-dehydro analogue (VII) without accumulation of any 20-dihydro compounds. Substrate specificity in the 20-reductase system of F. solani, Cylindrocarpon radicicola, Septomyxa affinis, Bacillus lentus, and three strains of B. sphaericus are demonstrated. The 20-reductase is active only on steroids having the 16alpha, 17alpha-oxido, and Delta(4)-3-keto functions. Evidence of competition between side-chain degrading enzymes and the 20-reductase for the steroid molecule and evidence of side-chain degradation followed by epoxide cleavage (and not the reverse) are presented. A mechanism for the epoxide opening by nongerminating spores of F. solani is postulated.  相似文献   

3.
Ruddock PL  Williams DJ  Reese PB 《Steroids》2004,69(3):193-199
A number of metal trifluoroacetates were reacted with the olefin 3beta-acetoxyandrost-5-en-17-one (6). Palladium(II) trifluoroacetate afforded bis[micro-trifluoroacetato(alpha-5,7-eta-3beta-acetoxyandrostenyl-17-one)palladium(II)] (20), a new ring B pi-allyl steroid-palladium complex, in quantitative yield. Thallium(III) trifluoroacetate gave 3beta-acetoxy-5alpha-hydroxy-6beta-trifluoroacetoxyandrostan-17-one (16), 3beta-acetoxy-6beta-trifluoroacetoxyandrost-4-en-17-one (9), 3beta-acetoxy-4beta-trifluoroacetoxyandrost-5-en-17-one (10), and 3beta-acetoxy-5alpha,6beta-dihydroxyandrostan-17-one (17). Lead(IV) trifluoroacetate yielded 9, 10 and 16. 3beta-Acetoxy-5alpha,6beta-bis(trifluoroacetoxy)androstan-17-one (15), a new compound, was also formed in this reaction. During the course of the lead(IV) studies the dichlorosteroid 21 and the rearranged allylic oxidation product 24 were formed. Their formation was attributed to the generation of lead(IV) chloride in the reaction. Silver(I) and copper(II) trifluoroacetates proved to be unreactive towards 6.  相似文献   

4.
3 beta-Hydroxy-5 alpha-cholest-8(14)-en-15-one, a potent inhibitor of sterol biosynthesis, was incubated with rat liver mitochondrial preparations in the presence of NADPH. The following four major products were isolated and characterized by nuclear magnetic resonance and mass spectrometry: (25R)- and (25S)-3 beta,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (4:1 ratio), 3 beta-hydroxy-15-oxo-5 alpha-cholest-8(14)-en-26-oic acid, and 3 beta,25-dihydroxy-5 alpha-cholest-8(14)-en-15-one. In addition, 3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one and 3 beta,24-dihydroxy-5 alpha-cholest-8(14)-en-15-one were identified as minor products by capillary gas chromatography-mass spectrometry.  相似文献   

5.
The plasma concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid have been compared with that of 7 alpha-hydroxy-4-cholesten-3-one in healthy subjects and in patients with an expected decrease or increase of the bile acid production. In controls and patients with liver disease, the level of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was positively correlated to that of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and not to that of 7 alpha-hydroxy-4-cholesten-3-one. In patients with stimulated bile acid formation the levels of the acids were not correlated to each other but there was a significant positive correlation between the levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid and 7 alpha-hydroxy-4-cholesten-3-one. These findings indicate that the precursor of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid differs depending on the activity of cholesterol 7 alpha-hydroxylase. Since the activity of this enzyme is reflected by the level of 7 alpha-hydroxy-4-cholesten-3-one in plasma the findings are compatible with a formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid from 3 beta,7 alpha-dihydroxy-5-cholestenoic acid when the rate of bile acid formation is normal or reduced and from 7 alpha-hydroxy-4-cholesten-3-one under conditions of increased bile acid synthesis. In support of this interpretation, 7 alpha,26-dihydroxy-4-cholesten-3-one was identified at elevated levels in plasma from patients with ileal resection or treated with cholestyramine. The levels of 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one were also higher than normal in these patients. Based on these findings and previous knowledge, a model is proposed for the biosynthesis of bile acids in man. Under normal conditions, two major pathways, one "neutral" and one "acidic" or "26-oxygenated", lead to the formation of cholic acid and chenodeoxycholic acid, respectively. These pathways are separately regulated. When the activity of cholesterol 7 alpha-hydroxylase is high, the "neutral" pathway is most important whereas the reverse is true when cholesterol 7 alpha-hydroxylase activity is low. In cases with enhanced activity of cholesterol 7 alpha-hydroxylase, the "neutral" pathway is connected to the "acidic" pathway via 7 alpha,26-dihydroxy-4-cholesten-3-one, whereas a flow from the acidic pathway to cholic acid appears to be of minor importance.  相似文献   

6.
The chemical syntheses of a number of 4,4-dimethyl substituted 15-oxygenated sterols have been pursued to permit evaluation of their activity in the inhibition of the biosynthesis of cholesterol and other biological effects. Described herein are the first chemical syntheses of 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-en-3 beta-ol-15-one, 3 beta,15 alpha-diacetoxy-4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene, 3 beta-acetoxy-4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-en-15 beta-ol, 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta,15 alpha-diol, 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta,15 beta-diol, 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-en-15 alpha-ol-3-one, 3 beta-benzoyloxy-4,4-dimethyl-5 alpha-cholest-8(14)-ene-7 alpha,15 alpha-diol, 7 alpha,15 alpha-diacetoxy-3 beta-benzoyloxy-4,4-dimethyl-5 alpha-cholest-8(14)-ene, 4,4-dimethyl-5 alpha-cholest-8(14)-en-3 beta-ol-15-one and 3 beta,7 alpha,15 alpha-tri-o-bromobenzoyloxy-5 alpha-cholest-8(14)-ene. Also prepared for use in the biological experiments were 4,4-dimethyl-5 alpha-cholest-7-ene-3 beta,15 alpha-diol, 4,4-dimethyl-5 alpha-cholest-8-ene-3 beta,15 alpha-diol and 4,4-dimethyl-5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol. The effects of twelve 4,4-dimethyl substituted 15-oxygenated sterols and of four 4,4-dimethyl substituted 32-oxygenated sterols on sterol synthesis and on the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity were evaluated in mouse L cells. With the exception of 4,4-dimethyl-5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol, all of the 4,4-dimethyl substituted 15-oxygenated sterols caused a 50% inhibition of sterol synthesis at less than 10(-6) M and six of the 4,4-dimethyl substituted 15-oxygenated sterols caused a 50% inhibition of sterol synthesis at less than 10(-7) M. 4,4-Dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta,15 alpha-diol caused a 50% decrease in sterol synthesis at 10(-8) M. The potencies of the 4,4-dimethyl substituted 15-oxygenated and C-32-oxygenated sterols with respect to inhibition of sterol synthesis and suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity have been compared with those of the corresponding sterols lacking the 4,4-dimethyl substitution.  相似文献   

7.
Side-chain functionalized delta 8(14)-15-ketosterols have been synthesized from 3 beta-acetoxy-24-hydroxy-5 alpha-chol-8(14)-en-15-one (VI) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Oxidation of VI to the 24-aldehyde VII, followed by Wittig olefination with isopropyltriphenylphosphonium iodide gave 3 beta-acetoxy-5 alpha-cholesta-8(14),24-dien-15-one (VIII), which was hydrolyzed to the free sterol IX. Oxymercuration of VIII followed by hydrolysis of the 3 beta-acetate gave 3 beta,25-dihydroxy-5 alpha-cholest-8(14)-en-15-one (IV). Hydroboration-oxidation of VIII followed by hydrolysis of the 3 beta-acetate gave 3 beta,24-dihydroxy-5 alpha-cholest-8(14)-en-15-one (V) as a 5:4 mixture of the 24R and 24S epimers. 1H and 13C nuclear magnetic resonance (NMR) assignments and mass spectral fragmentation patterns, supported by high-resolution measurements, are presented for IV and its 3 beta-acetate, V, VII, VIII, and IX. Characterization of IV by NMR and of trimethylsilyl ethers of IV and V by gas chromatography-mass spectrometry was compatible with spectral data for samples of IV and V isolated previously after incubation of I with rat liver mitochondria in the presence of NADPH. Sterols IV, V, and IX were very potent in lowering of the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Chinese hamster ovary cells; their potency was comparable to that of I.  相似文献   

8.
3 beta-Hydroxy-5 alpha-cholest-8(14)-en-15-one (I) and (25R)-26-hydroxycholesterol (II), both potent regulators of sterol biosynthesis, have been found to show synergism in the reduction of the levels of HMG-CoA reductase activity in CHO-K1 cells. When equimolar concentrations of I and II were added in combination, synergistic reduction (p less than 0.0001) of enzyme activity was observed at total oxysterol concentrations of 0.1 microM, 0.2 microM, and 0.5 microM. Maximal synergistic effect in the lowering of reductase activity (28% greater than predicted) was observed at 0.1 microM total oxysterol concentration. Five additional experiments conducted with 50 nM oxysterols confirmed the synergistic effect at 0.1 microM total sterol concentration. These results suggest that the in vivo importance of I and II may be greater than that anticipated on the basis of the concentrations of the individual sterols.  相似文献   

9.
The microbial modification of several trichothecene mycotoxins by trichothecene-producing strains of Fusarium nivale and F. solani was studied. These results were compared with the corresponding chemical modifications. The growing mycelia of Fusarium spp. did not convert 4beta-acetoxy-3alpha,7alpha, 15-trihydroxy-12, 13-epoxytrichothec-9-en-8-one (fusarenon) into 3alpha,4beta, 7alpha,15-tetrahydroxy-12,13-epoxy-trichothec-9-en-8-one (nivalenol), whereas 3alpha,4beta,7alpha,15-tetracetoxy-12,13-epoxytrichothec-9-en-8-one (tetraacetylnivalenol) was deacetylated to yield 3alpha-hydroxy-4beta,7alpha,15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (4,7,15-triae-tylnivalenol), which was resistant to further deacetylation. T-2 toxin was transformed intoHT-2 toxin, and 8alpha-(3-methylbutyryloxy)-3alpha,4beta,-15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (T-2 acetate) was transformed into HT-2 toxin via T-2 toxin. Chemical modification with ammonium hydroxide converted tetraacetylnivalenol into fusarenon via 4,7,15-triacetylnivalenol. 3alpha-7alpha,15-Triacetoxy-12,13-epoxytrichothec-9-en-8-one (triacetyldeoxynivalenol) gave deacetylation products lacking the C-7 or c-15 acetyl group in addition to 7alpha,15- diacetoxy-3alpha-hydroxy-12, 13-epoxytrichothec-9-en-8-one (7,15-diacetyldeoxynivalenol). These results demonstrate the regio-selectivity in microbial modification of trichothecenes. Based on the results and available knowledge concerning the transformation of trichothecenes, mechanisms for biological modifications of these mycotoxins are postulated.  相似文献   

10.
A novel class of inhibitors for the branched-chain 2-oxo acid dehydrogenase (BCOAD) complex has been synthesized and studied. The sodium salts of arylidenepyruvates: e.g., furfurylidenepyruvate (compound I), 4-(3-thienyl)-2-oxo-3-butenoate (compound II), cinnamalpyruvate (compound III) and 4-(2-thienyl)-2-oxo-3-butenoate (compound IV) inhibit the overall and kinase reactions of the BCOAD complex from bovine liver. Inhibitions of the overall reaction occur at the decarboxylase (E1) step as determined by a spectrophotometric assay with 2,6-dichlorophenolindophenol as an electron acceptor. Inhibition of the E1 reaction by compound I (Ki = 0.5 microM) is competitive, whereas inhibitions by compounds II (Ki = 150 microM) and III (Ki = 500 microM) are non-competitive with respect to the substrate 2-oxoisovalerate. The Km value for 2-oxoisovalerate is 6.7 microM as measured by the E1 assay. Inhibition of the E1 step by compounds I, II and III are reversible at low inhibitor concentrations based on the Michaelis-Menten kinetics observed. By comparison, compound I does not significantly inhibit pyruvate and 2-oxoglutarate dehydrogenase complexes. The arylidenepyruvates (compounds I, II and IV) inhibit the BCOAD kinase reaction in a manner similar to the substrate 2-oxo acids. The inhibition of the kinase reaction by compound I is non-competitive with respect to ATP, with an apparent Ki value of 4.5 mM. The results suggest that arylidenepyruvates may be useful probes for elucidating the reaction mechanisms of the BCOAD complex and its kinase.  相似文献   

11.
The chemical syntheses of a number of C27 15-oxygenated sterols and their derivatives have been pursued to permit evaluation of their activity in the inhibition of sterol biosynthesis in animal cells in culture. Described herein are chemical syntheses of 3 alpha-benzoyloxy-5 alpha-cholest-8(14)-en-15-one, 5 alpha-cholest-8(14)-en-3 alpha-ol-15-one, 5 alpha-cholest-8(14)-en-15-one-3 beta-yl pyridinium sulfate, 5 alpha-cholest-8(14)-en-15-one-3 beta-yl potassium sulfate (monohydrate), 5 alpha-cholest-8(14)-en-15-one-3 alpha-yl pyridinium sulfate, 5 alpha-cholest-8(14)-en-3 alpha-yl potassium sulfate (monohydrate), 5 alpha-cholest-8(14)-en3,7,15-trione, 5 alpha-cholest-8(14)-en-15 alpha-ol-3-one, 5 alpha, 14 alpha-cholestan-3 beta, 15 beta-diol diacetate, 5 alpha, 14 beta-cholestan-3 beta, 15 beta-diol diacetate, 5 alpha, 14 alpha-cholestan-3 beta, 15 alpha-diol, 5 alpha, 14 alpha-cholestan-15 alpha-ol-3-one, 5 alpha, 14 beta-cholestan-3 beta, 15 beta-diol, 5 alpha, 14 alpha-cholestan-3,15-dione, and 5 alpha, 14 beta-cholestan-3,5-dione. The effects of 8 of the above compounds and of 5 alpha-cholesta-6,8(14)-dien-3 beta-ol-15-one, 3 beta-he misuccinoyloxy-5 alpha-cholest-8(14)-en-15 one, 3 beta-hexadecanoyloxy-5 alpha-cholest-8(14)-en-15-one, 5 alpha-cholest-8(14)-en-3,15-dione, 5 alpha-cholesta-6,8(14)-dien-3,15-dione, 5 alpha-cholest-8-en-3 beta, 15 alpha-diol, 5 alpha-cholest-7-en-3 beta, 15 alpha-diol, 5 alpha-cholest-8(14)-en-15 alpha-ol-3-one, 5 alpha-cholest-8-en-15 alpha-ol-3-one, and 5 alpha-cholest-7-en-15 alpha-ol-3-one on the synthesis of digitonin-precipitable sterols and on levels of HMG-CoA reductase activity have been investigated and compared with previously published data on 7 other C27 15-oxygenated sterols.  相似文献   

12.
Studies of the oxysterol inhibition of tumor cell growth   总被引:2,自引:0,他引:2  
The oxysterols 3 beta-hydroxy-5 alpha-cholest-8-en-11-one, 3 beta-hydroxy-5 alpha-cholest-8-en-7-one, 3 beta-hydroxy-5 alpha-cholest-8(14)-en-7-one, 3 beta-hydroxy-4,4'-dimethylcholest-5-ene-7 one, 4,4'-dimethylcholest-5-ene-3 beta, 7 alpha-diol, 4,4'-dimethylcholest-5-ene-3 beta, 7 beta-diol, lanost-8-ene-3 beta, 25-diol, 25-hydroxylanost-8-en-3-one, 9 alpha, 11 alpha-epoxy-5 alpha-cholest-7-en-3 beta-ol, 3 beta-hydroxycholest-5 alpha-en-22-one, and 3 beta-hydroxycholest-5-en-22-one oxime were evaluated with respect to their ability to inhibit cell growth. All of the sterols were found to possess cytotoxicity when incubated with hepatoma (HTC) and lymphoma (RDM-4) cells in culture at 10-30 microM concentrations.  相似文献   

13.
A new and efficient method for preparation of a 7-en-6-one derivative of cholic acid is described. Acetylation of the known methyl 3alpha-carbethoxy-12alpha-hydroxy-7-oxo-5beta-cholan-24-oate (3) at 12 position and reduction of its 7-oxo group yield the 12alpha-acetoxy-7alpha-hydroxy derivative 5. Dehydration of the 7alpha-hydroxy group in 5 followed by allylic oxidation provide methyl 3alpha-carbethoxy-12alpha-acetoxy-6-oxo-5beta-chol-7-en-24-oate (7) in good yield.  相似文献   

14.
The effect on cholesterol metabolism in Hep G2 hepatoma cells was studied for new analogues of 15-ketosterol [3beta-hydroxy-5alpha-cholest-8(14)-en-15-one] (I): (24S)-3beta-hydroxy-24-methyl-5alpha-cholesta-8(14),22-diene-15-one (II), (24S)-3alpha-hydroxy-24-methyl-5-alpha-cholesta-8(14),22-diene-15-one (III), and (24S)-24-methyl-5alpha-cholesta-8(14),22-diene-3,15-dione (IV). Analogues (I) and (II) were found to be equally effective inhibitors of cholesterol biosynthesis after a 3-h incubation with Hep G2 cells; however, (II) produced a stronger inhibitory effect after a 24-h incubation or after an incubation of cells preliminarily treated with the inhibitor in a medium containing no ketosterol. The ability of ketosterols to inhibit cholesterol biosynthesis decreased in the order (II) > (IV) > (III). Ketosterol (II) inhibited, whereas ketosterol (III) stimulated the biosynthesis of cholesteryl esters. (IV) stimulated the biosynthesis of cholesteryl esters at a concentration of 1-10 microM and exerted no marked effect at a concentration of 30 microM. These results indicate that delta8(14)-15-ketosterols containing a modified side chain are of interest as regulators of cholesterol metabolism in liver cells. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

15.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

16.
Analogs of 7 alpha-hydroxy-4-cholesten-3-one were prepared to ascertain structural features necessary for maximal activity of hepatic microsomal 12 alpha-steroid hydroxylase. Methyl 3 alpha,7 alpha-dihydroxy-5 beta-cholane-24-carboxylate derived from chenodeoxycholic acid was oxidized at C-3 with silver carbonate/Celite. The product was hydrolyzed and dehydrogenated with SeO2 to provide 3-oxo-7 alpha-hydroxy-4-cholene-24-carboxylic acid. 5 beta-Cholestane-3 alpha,7 alpha,25-triol and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol were similarly oxidized at C-3 and dehydrogenated to provide 7 alpha,25-dihydroxy-4-cholesten-3-one and 7 alpha,12 alpha,25-trihydroxy-4-cholesten-3-one, respectively. The products were characterized by thin-layer and gas chromatography, ultraviolet, infrared, proton resonance and mass spectrometry.  相似文献   

17.
Treatment of 3 beta-benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (I) with gaseous HCl in chloroform at -40 degrees C gave, in 87% yield, 3 beta-benzoyloxy-7 alpha,15 beta-dichloro-5 alpha cholest-8(14)-ene (III). Reduction of the latter compound with lithium aluminum hydride in ether at room temperature for 20 min gave, in 86% yield, 7 alpha-15 beta-dichloro-5 alpha-cholest-8(14)-en-3 beta-ol (IV). The latter compound was fully characterized and assignments of the individual carbon peaks in the 13C nuclear magnetic resonance spectra of this sterol have been completed. Reduction of III with excess lithium aluminum hydride in refluxing ether for 4 days gave, in 74% yield, 5 alpha-cholesta-7,14-dien-3 beta-ol (VI). Reduction of the dichloro-steryl benzoate III with lithium triethylborohydride in tetrahydrofuran gave, in 88% yield, 5 alpha-cholest-8(14)-en-3 beta-ol (VII). A similar reduction using lithium triethylborodeuteride led to the formation of [7 beta, 15 xi-2 H2]-VIIa. Treatment of III with concentrated HCl in a mixture of chloroform and methanol gave, in 79% yield, 3 beta-benzoyloxy-5 alpha-cholest-8(14)-en-15-one (II) which was characterized as such and as the corresponding free sterol.  相似文献   

18.
Low density lipoprotein (LDL) cholesterol is known to be oxidized both in vitro and in vivo giving rise to oxygenated sterols. Conflicting results, however, have been reported concerning both the nature and the relative concentrations of these compounds in oxidized human LDL. We examined the extracts obtained from Cu(2+)-oxidized LDL. Thin layer chromatography analysis showed that the sterol mixture became more complex with reaction time. Analysis of the components by thin layer chromatography and mass spectrometry allowed to establish that 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha OOH and beta OOH) are largely prevalent among the oxysterols at early times of oxidation. These hydroperoxy derivatives have not been previously identified in oxidized LDL. The concentration of 7-hydroperoxycholest-5-en-3 beta-ol decreased with oxidation time with a concomitant increase of cholest-5-en-3 beta, 7 alpha-diol (7 alpha OH), cholest-5-en-3 beta, 7 beta-diol (7 beta OH), cholesta-3,5-dien-7-one (CD) and cholest-5-en-3 beta-ol-7-one (7CO). After 24 h of oxidation a minor component of the LDL sterols was cholestan-3 beta-ol-5,6-oxide (EP).  相似文献   

19.
Reactions of cholest-5-ene (I) and its 3 beta-chloro (II) and 3 beta-acetoxy (III) analogs with trimethylchlorosilane-dimethyl sulfoxide in dry acetonitrile furnish cholest-4-en-6 beta-yl methyl sulfide (IV) and its 3 beta-chloro (V) and 3 beta-acetoxy (VI) analogs. Oxidation of (IV) with m-chloroperbenzoic acid affords cholest-4-en-6 beta-yl methyl sulfone (VII) and 4 alpha, 5-epoxy-5 alpha-cholestan-6 beta-yl methyl sulfone (VIII). Under similar reaction conditions, V furnishes 3 beta-chlorocholest-4-en-6 beta-yl methyl sulfone (IX), while VI gives 3 beta-acetoxycholest-4-en-6 beta-yl methyl sulfone (X) and 3 beta-acetoxy-4 alpha, 5-epoxy-5 alpha-cholestan-6 beta-yl methyl sulfone (XI). The structures of these compounds were established on the basis of analytic and spectral data. Some of these compounds have been evaluated for their possible biologic activities.  相似文献   

20.
A four-step synthesis of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I) from 7-dehydrocholesterol is described. This synthesis, which is efficient and suitable for kilogram scale work, was carried out in a 33% overall average yield (39% overall best yield). A major byproduct of the hydrolysis of 3 beta-benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene to I was found to be the ring C aromatic sterol 12-methyl-18-nor-5 alpha-cholesta-8,11,13-trien-3 beta-ol. Several other intermediates and byproducts of these reactions were also identified. All new sterols were characterized by 1H- and 13C-NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号