首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The effect of acetylation of tyrosine residues on the binding capacity of human growth hormone (hGH) to rat liver lactogenic and somatogenic receptors was studied. When 3.7 tyrosine and 4.8 lysine residues were acetylated with N-acetylimidazole, both the in vivo and the in vitro capacities of hGH to compete with 125I-labeled bovine growth hormone for somatogenic binding sites greatly decreased. Acetylation also affected the in vitro binding capacity to lactogenic sites. Most of the somatogenic binding activity was recovered by hydroxylamine treatment, which removes O-acetyl groups from tyrosine residues but not N-acetyl groups from lysine residues. The same treatment partially restored lactogenic binding capacity. The reactivity of hGH tyrosine residues to N-acetylimidazole, together with previous evidence, suggests that: (a) Tyrosine residues 160 and 164, when acetylated, are likely to be responsible for the low binding activity of acetylated hGH. (b) Tyrosine 160 may play a significant role in hGH interaction with lactogenic receptors.  相似文献   

5.
6.
7.
Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context.  相似文献   

8.
Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide.  相似文献   

9.
10.
11.
J H Waterborg 《Biochemistry》1992,31(27):6211-6219
Radioactive acetylation in vivo of plant histone H4 of alfalfa, Arabidopsis, tobacco, and carrot revealed five distinct forms of radioactive, acetylated histone. In histone H4 of eukaryotes ranging from fungi to man, acetylation is restricted to four lysines (residues 5, 8, 12, and 16) possibly caused by a quantitative methylation of lysine-20. Chemical and proteolytic fragmentation of the amino terminally blocked alfalfa H4 protein, dynamically acetylated by radioactive acetate in vivo, allowed protein sequencing and identification of selected peptides. Peptide identification was facilitated by analyzing fully characterized calf histone H4 in parallel. Acetylation in vivo of alfalfa histone H4 was restricted to the lysines in the amino-terminal domain of the protein, residues 1-23. Lysine-20 was shown to be free of methylation, as in pea histone H4. This apparently makes lysine-20 accessible as a novel target for histone acetylation. The in vivo pattern of lysine acetylation (16 greater than 12 greater than 8 greater than or equal to 5 = 20) revealed a preference for lysines -16 and -12 without an apparent strict sequential specificity of acetylation.  相似文献   

12.
13.
Like phosphorylation, acetylation of lysine residues within a protein is considered a biologically relevant modification that controls the activity of target proteins. During stress of cells, massive protein acetylation takes place. Here, we show that p38 mitogen-activated protein kinase (MAPK), which controls many biological functions during stress, is reversibly acetylated by PCAF/p300 and HDAC3. We identified two acetylated lysine residues, K152 and K53, located in the substrate binding domain and in the ATP-binding pocket of p38, respectively. Acetylation of lysine 53 enhanced the activity of p38 by increasing its affinity for ATP binding. The enhanced acetylation and activation of p38 were found to be in parallel with reduced intracellular ATP levels in cardiomyocytes under stress, as well as in vivo models of cardiac hypertrophy. Thus, our data show, for the first time, that p38 activity is critically regulated by, in addition to phosphorylation, reversible acetylation of a lysine residue, which is conserved in other kinases, implying the possibility of a similar mechanism regulating their activity.  相似文献   

14.
15.
16.
17.
The TGF-beta (transforming growth factor-beta) pathway represents an important signalling pathway involved in regulating diverse biological processes, including cell proliferation, differentiation and inflammation. Despite the critical role for TGF-beta in inflammatory responses, its role in regulating NF-kappaB (nuclear factor-kappaB)-dependent inflammatory responses still remains unknown. In the present study we show that TGF-beta1 synergizes with proinflammatory cytokine TNF-alpha (tumour necrosis factor-alpha) to induce NF-kappaB activation and the resultant inflammatory response in vitro and in vivo. TGF-beta1 synergistically enhances TNF-alpha-induced NF-kappaB DNA binding activity via induction of RelA acetylation. Moreover, synergistic enhancement of TNF-alpha-induced RelA acetylation and DNA-binding activity by TGF-beta1 is mediated by PKA (protein kinase A). Thus the present study reveals a novel role for TGF-beta in inflammatory responses and provides new insight into the regulation of NF-kappaB by TGF-beta signalling.  相似文献   

18.
B M Turner  L P O'Neill  I M Allan 《FEBS letters》1989,253(1-2):141-145
Histone H4 can be reversibly acetylated at lysine residues 5, 8, 12 and 16. It is possible that acetylation of individual residues will exert specific effects on chromatin function, but this hypothesis is difficult to test with present techniques for analysis of acetylation. To address this problem, we have prepared antibodies which distinguish H4 molecules acetylated at each of the sites used in vivo. By electrophoresis and immunolabeling we have shown that, in H4 from human cells, the four lysine residues are acetylated in a preferred, but not exclusive order, namely lysine 16, followed by 12 and 8, followed by 5.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号