首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of pyrroline-5-carboxylate dehydrogenase have been conducted using a spectrophotometric method to monitor substrate-dependent NAD(P)H production. For the assay of the mammalian enzyme, the spectrophotometric assay was found to be unacceptable for kinetic studies as the production of NAD(P)H was nonlinear with time and protein concentration. An assay which measures radiolabeled glutamate production by this enzyme in the presence of NAD+ from radiolabeled pyrroline-5-carboxylate has been developed. Separation of substrate from product is achieved by column chromatography using Dowex 50 cation-exchange resin. The product isolated by this procedure was identified as glutamate. This new assay is linear with time and protein concentration and gives reproducible results. The assay is not influenced by competing enzyme activities, such as glutamate dehydrogenase, in a liver homogenate so that quantitative conversion of pyrroline-5-carboxylate to glutamate is observed.  相似文献   

2.
Exposure of Neuro-2a and PC12 cells to micromolar concentrations of sulfite caused an increase in reactive oxygen species and a decrease in ATP. Likewise, the biosynthesis of ATP in intact rat brain mitochondria from the oxidation of glutamate was inhibited by micromolar sulfite. Glutamate-driven respiration increased the mitochondrial membrane potential (MMP), and this was abolished by sulfite but the MMP generated by oxidation of malate and succinate was not affected. The increased rate of production of NADH from exogenous NAD+ and glutamate added to rat brain mitochondrial extracts was inhibited by sulfite, and mitochondria preincubated with sulfite failed to reduce NAD+. Glutamate dehydrogenase (GDH) in rat brain mitochondrial extract was inhibited dose-dependently by sulfite as was the activity of a purified enzyme. An increase in the Km (glutamate) and a decrease in Vmax resulting in an attenuation in Vmax/Km (glutamate) at 100 microm sulfite suggest a mixed type of inhibition. However, uncompetitive inhibition was noted with decreases in both Km (NAD+) and Vmax, whereas Vmax/Km (NAD+) remained relatively constant. We propose that GDH is one target of action of sulfite, leading to a decrease in alpha-ketoglutarate and a diminished flux through the tricarboxylic acid cycle accompanied by a decrease in NADH through the mitochondrial electron transport chain, a decreased MMP, and a decrease in ATP synthesis. Because glutamate is a major metabolite in the brain, inhibition of GDH by sulfite could contribute to the severe phenotype of sulfite oxidase deficiency in human infants.  相似文献   

3.
A GDH gene from Halobacterium salinarum has been cloned and sequenced and the publication assigns the sequence to the NADP+-glutamate dehydrogenase of this organism. We have expressed this gene in Escherichia coli and find that it encodes an NAD+-dependent glutamate dehydrogenase without activity towards NADP+. Further, peptide sequence from the two corresponding proteins supports the view that the deposited sequence is indeed that of the NAD+-dependent glutamate dehydrogenase. Sequence from the NAD+-dependent protein matches the published gene sequence, whereas sequence from the NADP+ glutamate dehydrogenase does not.  相似文献   

4.
Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme.  相似文献   

5.
Chlorophyllide a was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) (PEG-NH2) to form a PEG-chlorophyllide conjugate through an acid-amide bond. The conjugate catalyzed the reduction of methylviologen in the presence of 2-mercaptoethanol. It also catalyzed the photoreduction of NADP+ or NAD+ in the presence of ascorbate as an electron donor and ferredoxin-NADP+ reductase as the coupling enzyme. Utilizing the reducing power of NADPH generated by PEG-chlorophyllide conjugate under illumination, glutamate was synthesized from 2-oxoglutarate and NH4+ in the presence of glutamate dehydrogenase. PEG-chlorophyllide conjugate was quite stable toward light illumination compared with chlorophyll a. The increase in the molecular weight of PEG in the PEG-chlorophyllide conjugates was accompanied by the enhancement of photostability of the conjugate and also by the increased solubility in the aqueous solution.  相似文献   

6.
T Sanner 《Biochemistry》1975,14(23):5094-5098
The reaction of glutamate dehydrogenase and glutamate (gl) with NAD+ and NADP+ has been studied with stopped-flow techniques. The enzyme was in all experiments present in excess of the coenzyme. The results indicate that the ternary complex (E-NAD(P)H-kg) is present as an intermediate in the formation of the stable complex (E-NAD(P)H-gl). The identification of the complexes is based on their absorption spectra. The binding of the coenzyme to (E-gl) is the rate-limiting step in the formation of (E-NAD(P)H-kg) while the dissociation of alpha-ketoglutarate (kg) from this complex is the rate-limiting step in the formation of (E-NAD(P)H-gl). The Km for glutamate was 20-25 mM in the first reaction and 3 mM in the formation of the stable complex. The Km values were independent of the coenzyme. The reaction rates with NAD+ were approximately 50% greater than those with NADP+. Furthermore, high glutamate concentration inhibited the formation of (E-NADH-kg) while no substrate inhibition was found with NADP+ as coenzyme. ADP enhanced while GTP reduced the rate of (E-NAD(P)H-gl) formation. The rate of formation of (E-NAD(P)H-kg) was inhibited by ADP, while it increased at high glutamate concentration when small amounts of GTP were added. The results show that the higher activity found with NAD+ compared to NADP+ under steady-state assay conditions do not necessarily involve binding of NAD+ to the ADP activating site of the enzyme. Moreover, the substrate inhibition found at high glutamate concentration under steady-state assay condition is not due to the formation of (E-NAD(P)H-gl) as this complex is formed with Km of 3 mM glutamate, and the substrate inhibition is only significant at 20-30 times this concentration.  相似文献   

7.
The NAD analog 3-acetylpyridine adenine nucleotide (APAD), because of its higher oxidation potential, has proven useful for the direct enzymatic measurement of such compounds as lactate, malate, glutamate, etc., for which the equilibrium with NAD+ as oxidant is unfavorable. An enzymatic cycling method which is capable of increasing the sensitivity of such reactions 10,000-fold or more is described. The APADH produced in the original stoichiometric reaction is used to catalyze a cycling reaction that employs lactate and malate dehydrogenases (EC 1.1.1.27 and EC 1.1.1.37) to generate (from lactate plus oxalacetate) very large quantities of pyruvate and malate. After the cycling step, the malate formed is measured with NAD+ and with malate dehydrogenase, plus aspartate aminotransferase, and oxaloacetate to pull this indicator reaction to completion. The application of this cycling method is illustrated by analysis of malate in the range 1 to 10 pmol.  相似文献   

8.
Isolated rat-liver mitochondria were used to study the relation between mitochondrial NADH levels, oxygen consumption (QO2), and extra-mitochondrial phosphates. Alterations in NADH and QO2 were accomplished by incubating mitochondria with different substrates or varying amounts of exogenous ATPase while monitoring QO2 and NAD(P)H fluorescence. Two sets of conditions were studied: (1) in the presence of excess ADP and inorganic phosphate, an increase in NAD(P)H fluorescence was associated with a linear increase in QO2; (2) when QO2 was driven by the steady-state hydrolysis of ATP by exogenous ATPase, increases in QO2 were associated with proportional decreases in NAD(P)H fluorescence. For all substrates tested this relation was linear; however, the slope was substrate dependent. Different substrates were able to maintain different NAD(P)H levels at the same QO2. To investigate this further, effects of changing substrates at constant QO2 on NAD(P)H and extra-mitochondrial phosphates were determined. Addition of glutamate + malate to mitochondria respiring on citrate caused a 50% increase in NAD(P)H fluorescence, a 41% decrease in ADP, and a 30% decrease in inorganic phosphate. Similar changes for the substrate jump, pyruvate + malate to glutamate + malate were found. Finally, it was determined that a linear relation holds between increases in NAD(P)H fluorescence and increases in QO2 when substrates were varied at constant, physiologic levels of extra-mitochondrial ADP. These results indicate that QO2 depends on NAD(P)H levels as well as on extra-mitochondrial phosphates over a wide range of respiratory rates.  相似文献   

9.
1. Computer averaging of multiple scans was used to refine the circular dichroism spectrum of bovine liver glutamate dehydrogenase, revealing well-defined structure in the aromatic region. 2. The circular dichroism of NAD+ bound to glutamate dehydrogenase is strongly negative at 260nm, probably owing to immobilization of the adenosine moiety. Loss of the characteristic adenine-nicotinamide interaction suggests that the coenzyme is bound in an unstacked conformation. 3. Glutarate and succinate, substrate analogues that are both inhibitors competitive with glutamate, do not significantly perturb the circular-dichroism spectrum of the enzyme in the absence of NAD+. 4. In the presence of NAD+, 150nM-succinate decreases the negative circular dichroism corresponding to bound coenzyme, but does not affect the protein circular dichroism. However, ISOmM-glutarate causes profound alternations of the circular-dichroism spectra of the bound NAD+ and of the enzyme, indicative of a protein conformational change. This direct evidence of conformational change specifically promoted by C5 dicarboxylates confirms the previous inference from protection studies. 5. The conformational change is discussed in relation to the allosteric mechanism of glutamate dehydrogenase.  相似文献   

10.
Astrocytes possess different, efficient ways to generate complex changes in intracellular calcium concentrations, which allow them to communicate with each other and to interact with adjacent neuronal cells. Here we show that cultured hippocampal astrocytes coexpress the ectoenzyme CD38, directly involved in the metabolism of the calcium mobilizer cyclic ADP-ribose, and the NAD+ transporter connexin 43. We also demonstrate that hippocampal astrocytes can release NAD+ and respond to extracellular NAD+ or cyclic ADP-ribose with intracellular calcium increases, suggesting the existence of an autocrine cyclic ADP-ribose-mediated signalling. Cyclic ADP-ribose-induced calcium changes are in turn responsible for an increased glutamate and GABA release, this effect being completely inhibited by the cyclic ADP-ribose specific antagonist 8-NH2-cADPR. Furthermore, addition of NAD+ to astrocyte-neuron co-cultures results in a delayed intracellular calcium transient in neuronal cells, which is strongly but not completely inhibited by glutamate receptor blockers. These data indicate that an astrocyte-to-neuron calcium signalling can be triggered by the CD38/cADPR system, which, through the activation of intracellular calcium responses in astrocytes, is in turn responsible for the increased release of neuromodulators from glial cells.  相似文献   

11.
1. Initial rates of oxidative deamination of L-glutamate with NAD+ as coenzyme, and of reductive aminiation of 2-oxoglutarate with NADH as coenzyme, catalysed by bovine liver glutamate dehydrogenase were measured in 0.111 M-sodium phosphate buffer, pH 7, at 25 degrees C, in the absence and presence of product inhibitors. All 12 possible combinations of variable substrate and product inhibitor were used. 2. Strict competition was observed between NAD+ and NADH, and between glutamate and 2-oxoglutarate. All other inhibition patterns were clearly non-competitive, except for inhibition by NH4+ with NAD+ as variable substrate. Here the extrapolation did not permit a clear distinction between competitive and non-competitive inhibition. 3. Mutually non-competitive behaviour between glutamate and NH4+ indicates that these substrates can be bound at the active site simultaneously. 4. Primary Lineweaver-Burk plots and derived secondary plots of slopes and intercepts against inhibitor concentration were linear, with one exception: with 2-oxoglutarate as variable substrate, the replot of primary intercepts against inhibitory NAD+ concentration was curved. 5. Separate Ki values were evaluated for the effect of each product inhibitor on the individual terms in the reciprocal initial-rate equations. With this information it is possible to calculate rates for any combination of substrate concentrations within the experimental range with any concentration of a single product inhibitor. 6. The inhibition patterns are consistent with neither a simple compulsory-order mechanism nor a rapid-equilibrium random-order mechanism without modification. They can, however, be reconciled with either type of mechanism by postulating appropirate abortive complexes. Of the two compulsory sequences that have been proposed, one, that in which the order of binding is NADH, NH4+, 2-oxoglutarate, requires an implausible pattern of abortive complex-formation to account for the results. 7. On the basis of a rapid-equilibrium random-order mechanism, dissociation constants can be calculated from the Ki values. Where these can be compared with independent estimates from the kinetics of the uninhibited reaction or from direct measurements of substrate binding, the agreement is reasonable good. On balance, therefore, the results provide further support for the rapid-equilibrium random-order mechanism under these conditions.  相似文献   

12.
Hamza MA  Engel PC 《FEBS letters》2008,582(13):1816-1820
Clostridial glutamate dehydrogenase mutants with the 5 Trp residues in turn replaced by Phe showed the importance of Trp 64 and 449 in cooperativity with glutamate at pH 9. These mutants are examined here for their behaviour with NAD+ at pH 7.0 and 9.0. The wild-type enzyme displays negative NAD+ cooperativity at both pH values. At pH 7.0 W243F gives Michaelis-Menten kinetics, and the same behaviour is shown by W243F and also W310F at pH 9.0, but not by W64F or W449F. W243 and W310 are apparently much more important than W64 and W449 for the coenzyme negative cooperativity, implying that different conformational transitions are involved in cooperativity with the coenzyme and with glutamate.  相似文献   

13.
Palmitylcarnitine oxidation by isolated liver mitochondria has been used to investigate the interaction of fatty acid oxidation with malate, glutamate, succinate, and the malate-aspartate shuttle. Mitochondria preincubated with fluorocitrate were added to a medium containing 2mM ATP and ATPase. This system, characterized by a high energy change, allowed titration of respiration to any desired rate between States 4 and 3 (Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65-134). When respiration (reference, with palmitylcarnitine and malate as substrates) was set at 75% of State 3, the oxidation of palmitylcarnitine was limited by acetoacetate formation. The addition of malate or glutamate approximately doubled the rate of beta oxidation. Malate circumvented this limitation by citrate formation, but the effect of glutamate apparently was due to enhancement of the capacity for ketogenesis. The rate of beta oxidation was curtailed when malate and glutamate were both present. This curtailment was more pronounced when the malate-aspartate shuttle was fully reconstituted. Among the oxidizable substrates examined, succinate was most effective in inhibiting palmitylcarnitine oxidation. Mitochondrial NADH/NAD+ ratios were correlated positively with suppression of beta oxidation. The degree of suppression of beta oxidation by the malate-aspartate shuttle (NADH oxidation) or by succinate oxidation was dependent on the respiratory state. Both substrates extensively reduced mitochondrial NAD+ and markedly suppressed beta oxidation as respiration approached State 4. Calculations of the rates of flux of hydrogen equivalents through beta oxidation show that the suppression of beta oxidation by glutamate or by the malate-aspartate shuttle is accounted for by increased flux of reducing equivalents through mitochondrial malic dehydrogenase. This increased Flux is accompanied by an increase in the steady state NADH/NAD+ ratio and a marked decrease in the synthesis of citrate. The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine. This shuttle was about equal to the reconstructed malate-aspartate shuttle in supression of palmitylcarnitine oxidation. This interaction could not be demonstrated in euthyroid animals owing to the low activity of the mitochondrial alpha-glycerol phosphate dehydrogenase. It is concluded that beta oxidation can be regulated by the NADH/NAD+ ratio. The observed stimulation of flux through malate dehydrogenase both by glutamate and by the malate-aspartate shuttle results in an increased steady state NADH/NAD+ ratio, and is linked to a stoichiometric outward transport of aspartate. We suggest, therefore, that some of the reducing pressure exerted by the malate-aspartate shuttle and by glutamate plus malate is provided through the energy-linked, electrogenic transport of aspartate out of the mitochondria. These results are discussed with respect to the mechanism of the genesis of ethanol-induced fatty liver.  相似文献   

14.
NAD+ facilitates high-yield reactivation of clostridial glutamate dehydrogenase (GDH) after unfolding in urea. The specificity of this effect has been explored by using analogues and fragments of NAD+. The adenine portion, unlike the nicotinamide portion, is important for reactivation. Alteration in the nicotinamide portion, in acetylpyridine adenine dinucleotide, has little effect, whereas loss of the 6-NH2 substitution on the adenine ring, in 6-deamino NAD, diminishes the effectiveness of the nucleotide in promoting refolding. Also ADP-ribose, lacking nicotinamide, promotes reactivation whereas NMN-phosphoribose, lacking the adenine, does not. Of the smaller fragments, those containing an adenosine moiety, and especially those with one or more phosphate groups, impede the refolding ability of NAD+, and are able to bind to the folding intermediate though unable to facilitate refolding. These results are interpreted in terms of the known 3D structure for clostridial glutamate dehydrogenase. It is assumed that the refolding intermediate has a more or less fully formed NAD+-binding domain but a partially disordered substrate-binding domain and linking region. Binding of NAD+ or ADP-ribose appears to impose new structural constraints that result in completion of the correct folding of the second domain, allowing association of enzyme molecules to form the native hexamer.  相似文献   

15.
Two inhibitors of lactate dehydrogenase generated during NADH storage have been isolated by chromatography. One is a dimer of the dinucleotide where the AMP moiety is unmodified. The other is also generated from NAD+ in the presence of a high concentration of phosphate ions at alkaline pH. This inhibitor was proved to be the addition compound of one phosphate group to position C-4 of the nicotinamide ring of NAD+ by NMR spectroscopy, enzymatic cleavage, and dissociation to NAD+ at neutral pH. This compound is a competitive inhibitor with respect to NAD+ in the presence of the lactate dehydrogenase with a Ki of 2 X 10(-7) M. The interaction of this inhibitor with lactate dehydrogenase is discussed relative to the structure of this enzyme.  相似文献   

16.
The NAD+-specific glutamate dehydrogenase from Peptostreptococcus asaccharolyticus follows Michaelis-Menten kinetics in contrast to the enzyme from several other sources, and thus gives linear double-reciprocal plots of initial-rate data. The initial-rate parameters have been determined for this bacterial dehyrogenase in the direction of oxidative deamination. The use of alternative coenzymes leads to some conclusions about the order of substrate addition. An investigation of the pH dependence of this reaction reveals that the binding of oxidised coenzyme is independent of pH over the range 6-9. The kinetic data are consistent with an ordered addition of coenzyme prior to glutamate, the reverse of the mechanism derived with ox glutamate dehydrogenase in the presence of ADP.  相似文献   

17.
The subcellular localizations of gamma-aminobutyrate transaminase (EC 2.6.1.19) and glutamate dehydrogenase (EC 1.4.1.2) in brain tissue of adult rats were compared with each other and with those of NAD+-isocitrate dehydrogenase (EC 1.1.41) and monoamine oxidase (EC 1.4.3.4; kynuramine as substrate). Crude mitochondrial fractions from brain tissue were centrifuged in continuous sucrose density gradients. gamma-Aminobutyrate transaminase and glutamate dehydrogenase were always found at a higher density than NAD+-isocitrate dehydrogenase and monoamine oxidase. When centrifuged for 1 h at 53 000gav., there was a slight difference between the distribution profiles of glutamate dehydrogenase and gamma-aminobutyrate transaminase. This difference was larger when the centrifugation time was only 15 min. It is concluded that there are subpopulations of brain mitochondria with differing proportions of gamma-aminobutyrate transaminase and glutamate dehydrogenase. The results are discussed in relation to evidence obtained with labelled precursors in vivo that there are at least two small glutamate compartments in adult brain.  相似文献   

18.
The reduction of both NO2- and hydroxylamine by the NADH-dependent nitrite reductase of Escherichia coli K 12 (EC 1.6.6.4) appears to follow Michaelis-Menten kinetics over a wide range of NADH concentrations. Substrate inhibition can, however, be detected at low concentrations of the product NAD+. In addition, NAD+ displays mixed product inhibition with respect to NADH and mixed or uncompetitive inhibition with respect to hydroxylamine. These inhibition characteristics are consistent with a mechanism in which hydroxylamine binds during catalysis to a different enzyme form from that generated when NAD+ is released. The apparent maximum velocity with NADH as varied substrate increases as the NAD+ concentration increases from 0.05 to 0.7 mM with 1 mM-NO2- or 100 mM-hydroxylamine as oxidized substrate. This increase is more marked for hydroxylamine reduction than for NO2- reduction. Models incorporating only one binding site for NAD can account for the variation in the Michaelis-Menten parameters for both NADH and hydroxylamine with [NAD+] for hydroxylamine reduction. According to these models, activation of the reaction occurs by reversal of an over-reduction of the enzyme by NADH. If the observed activation of the enzyme by NAD+ derives both from activation of the generation of the enzyme-hydroxylamine complex from the enzyme-NO2- complex during NO2- reduction and from activation of the reduction of the enzyme-hydroxylamine complex to form NH4+, then the variation of Vapp. for NO2- or hydroxylamine with [NAD+] is consistent with the occurrence of the same enzyme-hydroxylamine complex as an intermediate in both reactions.  相似文献   

19.
1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system.  相似文献   

20.
In unwashed mitochondria the oxidation of L-lactate (with NAD+) proceeds in presence of the added lactate dehydrogenase. The respiration is characterized by the high rate in state 4 and is stimulated by ADP. This process takes place in unwashed mitochondria and homogenate of the heart in absence of added lactate dehydrogenase. Oxidation of lactate with NAD+ is inhibited by rotenone. It has been also revealed that the oxidation of glutamate is insufficiently altered in presence of lactate (with NAD+) in unwashed mitochondria as compared with the washed ones. It is supposed that the stimulating effect of lactate with NAD+ on the mitochondria respiration is not so much a result of the membrane-damaged action as a result of oxidation of lactate dehydrogenase reaction products: phosphorylative oxidation of pyruvate and nonconjugated oxidation of NADH. Utilization of these products takes place in the main respiratory chain, including its first stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号