首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2022,121(19):3745-3752
Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[μ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high-affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[μ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA binding and unbinding as well as the association and dissociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared with the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.  相似文献   

2.
The mono and bis dipyrido[3,2-a:2′,3′-c]phenazine (dppz) adducts of iron(III) chloride, i.e. [Fe(dppz)]Cl3 and [Fe(dppz)2]Cl3, have been synthesized and characterized. The interaction of the FeIIIdppz hydrolyzed aquo complex with native calf thymus DNA has been monitored as a function of the metal complex-DNA molar ratio, by variable temperature UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The results obtained in solution at various ionic strength values give support for a tight intercalative binding of the FeIIIdppz cation with DNA. In particular, the appearance of induced CD bands, caused by the addition of FeIIIdppz, indicate the existence of a rigid metal complex-DNA-binding leading to dominating chiral organization of FeIIIdppz species within the DNA double helix. The trend of selected CD bands with the molar concentration of FeIIIdppz emphasizes that the presence of high amounts of metal complex induces also the formation of DNA-FeIIIdppz supramolecular aggregates in solution. The analysis of fluorescence measurements allowed us to calculate a value of the intercalative binding constant comparable to that obtained by UV spectrophotometric titration. Finally, the temperature dependence of the absorbance at 258 nm shows that the metal complex strongly increases the DNA melting temperature already at metal complex-DNA molar ratio equal to 0.25 suggesting that metal complex intercalation effectively hinders DNA denaturation. Overall, the results of the present study point out that the FeIIIdppz aquo complex has DNA-binding properties analogous to those previously reported for the tris-chelate FeII(phen)2dppz complex (phen = 1,10-phenantroline).  相似文献   

3.
Metal susceptibility assays and spot plating were used to investigate the antimicrobial activity of enantiopure [Ru(phen)2dppz]2+ (phen =1,10‐phenanthroline and dppz = dipyrido[3,2‐a:2´,3´‐c]phenazine) and [μ‐bidppz(phen)4Ru2]4+ (bidppz =11,11´‐bis(dipyrido[3,2‐a:2´,3´‐c]phenazinyl)), on Gram‐negative Escherichia coli and Gram‐positive Bacillus subtilis as bacterial models. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined for both complexes: while [μ‐bidppz(phen)4Ru2]4+ only showed a bactericidal effect at the highest concentrations tested, the antimicrobial activity of [Ru(phen)2dppz]2+ against B. subtilis was comparable to that of tetracyline. In addition, the Δ‐enantiomer of [Ru(phen)2dppz]2+ showed a 2‐fold higher bacteriostatic and bactericidal effect compared to the Λ‐enantiomer. This was in accordance with the enantiomers relative binding affinity for DNA, thus strongly indicating DNA binding as the mode of action.  相似文献   

4.
The enantioselective binding of [Fe(4,7-dmp)3]2+ (dmp: 4,7-dimethyl-1,10-phenantroline) and [Fe(3,4,7,8-tmp)3]2+ (tmp: 3,4,7,8-tetramethyl-1,10-phenanthroline) to calf-thymus DNA (ct-DNA) has been systematically studied by monitoring the circular dichroism (CD) spectral profile of the iron(II) complexes in the absence and presence of ct-DNA. The effect of salt concentration and temperature on the degree of enantioselectivity of the ct-DNA binding of the iron(II) complexes, i.e. the molar ratio of Δ- to Λ-enantiomer in the solution or vice versa has been rigorously evaluated. It is noticeable that Δ-[Fe(4,7-dmp)3]2+ and Λ-[Fe(3,4,7,8-tmp)3]2+ are preferentially bound to ct-DNA as reflected in their opposite CD spectral profiles. The preferential binding of the Λ-enantiomer of [Fe(3,4,7,8-tmp)3]2+ to ct-DNA compared to that of the Δ-enantiomer is associated with the bulkiness of the ancillary ligands due to substitution of four hydrogen atoms in 1,10-phenanthroline for four methyl groups. The determination of enantiomeric inversion constant (Kinv) at various salt concentrations has revealed that the degree of enantioselectivity is salt concentration dependent, indicating that electrostatic interaction is involved in the enantioselective binding of the iron(II) complexes to ct-DNA. Although [Fe(4,7-dmp)3]2+ and [Fe(3,4,7,8-tmp)3]2+ exhibit an opposite pattern in the CD spectra, the degree of their enantioselectivity (Kinv) is not different from each other significantly. A thermodynamic study on the enantioselective binding of [Fe(4,7-dmp)3]2+ to ct-DNA using the van’t Hoff plot of ln Kinv versus 1/T has demonstrated that the enthalpy change (ΔH°) in the inversion process from the Λ- to Δ-enantiomer of [Fe(4,7-dmp)3]2+ ct-DNA is positive, indicating that the process is endothermic and thus entropically driven.  相似文献   

5.
Chiral recognition of DNA molecules is important because DNA chiral transition and its different conformations are involved in a series of important life events. Among them, polymorphic human telomere DNA has attracted great interests in recent years because of its important roles in chromosome structural integrity. In this report, we examine the short-term effect of chiral metallo-supramolecular complex enantiomers treatment on tumor cells, and find that a zinc-finger-like alpha helical chiral metallo-supramolecular complex, [Ni2L3]4+-P enantiomer (NiP), can selectively provoke the rapid telomere uncapping, trigger DNA damage responses at telomere and degradation of G-overhang and the delocalization of telomeric protein from telomeres. Further studies indicate that NiP can induce an acute cellular apoptosis and senescence in cancer cells rather than normal cells. These results are further evidenced by the upregulation of p21 and p16 proteins. Moreover, NiP can cause translocation of hTERT from nuclear to cytoplasm through Tyr 707 phosphorylation. While its enantiomer, [Ni2L3]4+-M (NiM), has no such mentioned effects, these results clearly demonstrate the compound’s chiral selectivity in cancer cells. Our work will shed light on design of chiral anticancer drugs targeting G-quadruplex DNA, and developing telomere and telomerase modulation agents.  相似文献   

6.
The unwinding of DNA strands in the presence of small concentrations of Mn2+ ions (2 × 10?4?4 × 10?4M) has been studied. The process of unwinding is nonequilibrium; the DNA strands are gradually unwound at a constant temperature corresponding to the beginning of the melting curve. There is no true renaturation in the partially melted DNA. It is shown in the paper that these effects are due to the aggregation of the unwound DNA regions. The Mn2+ ions are responsible for the binding of the unwound strands. The aggregation precludes renaturation, shifts the equilibrium towards the melted state, and causes slow unwinding at a constant temperature. The binding of denaturated regions seems to occur through the guanines.  相似文献   

7.
The enantiomers of the Sm (III), Eu (III) and Yb (III) complexes [LnL(NO3)2](NO3) of a chiral hexaazamacrocycle were tested as catalysts for the hydrolytic cleavage of supercoiled plasmid DNA. The catalytic activity was remarkably enantioselective; while the [LnLSSSS(NO3)2](NO3) enantiomers promoted the cleavage of plasmid pBR322 from the supercoiled form (SC) to the nicked form (NC), the [LnLRRRR(NO3)2](NO3) enantiomers were inactive. Kinetics of plasmid DNA hydrolysis was also investigated by agarose electrophoresis and it indicated typical single-exponential cleavage reaction. The hydrolytic mechanism of DNA cleavage was confirmed by the successful ligation of hydrolysis product by T4 ligase. The NMR study of the solutions of the complexes in various buffers indicated that the complexes exist as monomeric cationic complexes [LnL(H2O)3]3 + in slightly acidic solutions and as dimeric cationic complexes [Ln2L2(μ-OH)2(H2O)2]4 + in slightly basic 8 mM solutions, with the latter form being a possible catalyst for hydrolysis of phosphodiester bonds.  相似文献   

8.
Escherichiacoli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with two to three additional kinetic steps prior to initiating DNA unwinding. Since RecBCD can “melt out” ∼ 6 bp upon binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but ATP-independent reaction, we investigated the effects of noncomplementary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well described by a sequential n-step mechanism with the same unwinding rate (mkU = 774 ± 16 bp s− 1) and kinetic step size (m = 3.3 ± 1.3 bp), yet two to three additional kinetic steps are still required prior to initiation of DNA unwinding (kC = 45 ± 2 s− 1). However, when the noncomplementary 5′ ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end structure for which RecBCD displays optimal binding affinity, the additional kinetic steps are no longer needed, although a slightly slower unwinding rate (mkU = 538 ± 24 bp s− 1) is observed with a similar kinetic step size (m = 3.9 ± 0.5 bp). The RecBC DNA helicase (without the RecD subunit) does not initiate unwinding efficiently from a blunt DNA end. However, RecBC does initiate well from a DNA end possessing noncomplementary twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple uniform n-step sequential scheme, without the need for the additional kC initiation steps, with a similar kinetic step size (m = 4.4 ± 1.7 bp) and unwinding rate (mkobs = 396 ± 15 bp s− 1). These results suggest that the additional kinetic steps with rate constant kC required for RecBCD to initiate unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes needed to engage the RecD motor with the 5′ ssDNA.  相似文献   

9.
The interaction of enantiomerically pure dinuclear complexes of the form [Ru2(L-L)4L1]4+ (where L-L = 2,2-bipyridine (bpy) or 1,10-phenanthroline (phen) and L1 = bis(pyridylimine) ligand ((C5H4N)CN(C6H4))2CH2)) with ct-DNA have been investigated by absorbance, circular dichroism, fluorescence displacement assays, thermal analysis, linear dichroism and gel electrophoresis. The complexes all bind more strongly to DNA than ethidium bromide, stabilise DNA and have a significant bending effect on DNA. The data for Δ,Δ-[Ru2(bpy)4L1]4+ are consistent with it binding to DNA outside the grooves wrapping the DNA about it. By way of contrast the other complexes are groove-binders. The phen complexes provide a chemically and enantiomerically stable alternative to the DNA-coiling di-iron triple-helical cylinder previously studied. In contrast to the di-iron helicates, the phen complexes show DNA sequence effects with Δ,Δ-[Ru2(phen)4L1]4+ binding preferentially to GC and Λ,Λ-[Ru2(phen)4L1]4+ to AT.  相似文献   

10.
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species.  相似文献   

11.
Ruthenium complexes with one dipyrido[3,2-a:2′-3′-c]phenazine (dppz) ligand, e.g. [Ru(phen)2(dppz)]2+ (phen = phenanthroline), shows strong binding to double helical DNA and are well-known DNA “light-switch” molecules. We have here investigated four new [Ru(phen)2(dppz)]2+ derivatives with different bulky quaternary ammonium substituents on the dppz ligand to find relationships between molecular structure and intercalation kinetics, which is considered to be of importance for antitumor applicability. Linear dichroism spectroscopy shows that the enantiomers of the new complexes exhibit very similar binding geometries (intercalation of dppz moiety between adjacent DNA base pairs) as the enantiomers of the parent [Ru(phen)2(dppz)]2+ complex. Absorption spectra and luminescence properties provide further evidence for a final intercalative binding mode which has to be reached by threading of a bulky moiety between the strands of the DNA. Δ-enantiomers of all the new complexes show much slower association and dissociation kinetics than that of a reference complex without a cationic substituent. Kinetics were not very different whether the bulky quaternary group was derived from hexamethylene tetramine or 1,4-diazabicyclo-(2,2,2)octane (DABCO) or whether it had one or two positive charges. However, a complex in which the hexamethylene tetramine substituent is attached via a phenyl group showed a lowered association rate, in addition to an improved quantum yield of luminescence. A second positive charge on the DABCO substituent resulted in a much slower dissociation rate, suggesting that the distance from the Ru-centre and the amount of charge are both important for threading intercalation kinetics.  相似文献   

12.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

13.
The binding of[Co(CN)6]3?, and that of[Fe(CN)6]3? and [Ru(CN)6]4? using a competitive method, to horse cytochrome c has been studied by 59 Co NMR spectroscopy. At I = 0.07 M, without added salt and in 2H2O at ph* 7.3 (measured in 2H2O) and 25°C, there are at least two binding sites on ferricytochrome c and ferrocytochrome c for [Co(CN)6]3?. Association constants were determined to be 2.0 ± 0.6 × 103M?1 and 1.5 ± 0.5 × 102M?1 respectively. with no effect of the oxidation state of the cytochrome. At higher ionic strength (I = 0.12 M adjusted with KCl the binding markedly decreased, and, although it was not possible to determine the precise binding stoichiometry and magnitude of association constants, it is clear that the association constants are ≤ 1.5 × 10tM?1 The binding of [Ru(CN)6]4? at I = 0.07, without added salt and in 2H2O at pH 1.3 and 23°C, was not precisely defined, but its binding strength relative to that of [Fe(CN)6]3? was determined. Extrapolating this to I = 0.12 (KCl) suggests that under these conditions the association constant for [Ru(CN)6]4? binding to ferricytochrome c is ≤ 3 × 102M?1.  相似文献   

14.
Influence of surface shape on DNA binding of bimetallo helicates   总被引:1,自引:0,他引:1  
In order to probe the DNA-helicate interactions responsible for the DNA binding and remarkable changes of the DNA secondary structure induced by a tetracationic bi-metallo helicate [Fe(2)(L(1))(3)](4+) (L(1)=C(25)H(20)N(4)), we have designed and synthesised derivatives with hydrophobic methyl groups at different positions on the ligand backbone. Two dimetallo helicates [Fe(2)(L(i))(3)](4+) were prepared using ligands L(3) and L(5) with the methyl substituent on, respectively, the 3 and 5 positions of the pyridyl ring thus producing a wider or slightly longer tetracationic DNA binder. UV/visible absorbance, circular and linear dichroism spectroscopies have been used to characterize the interactions of the cylinders with DNA with the aim of investigating any sequence preference or selectivity upon binding. Competitive binding studies using fluorescent dyes Hoechst 33258 (a minor groove binder), ethidium bromide (an intercalator) and a major groove binding cation (cobalt (III) hexammine) which induces the B-->Z transition have been employed to determine the binding geometries of the enantiomers of two methylated helicates (L(3) and L(5)) to DNA and compare with the data obtained previously for the unmethylated analogue (L(1)). The results demonstrate that the racemic mixtures and the resolved enantiomers of all helicates bind to DNA inducing structural changes. The overall conclusion from the effect of adding these groups to the surface of the parent helicate is that increasing the width (L(3)) reduces the DNA binding strength, the bending and coiling effect and the groove selectivity of the enantiomers compared with the parent compound. There is limited evidence to suggest a slight GC sequence preference. Lengthening the helicate (L(5)) results in DNA interactions similar to those of the parent compounds, with an increased preference of the P enantiomer for the minor groove indicating an enhancement of mode selectivity.  相似文献   

15.
A new ruthenium(II) complex, [Ru(bpy)2(Htip)]Cl2 {where bpy = 2,2′-bipyridine and Htip = 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}, has been synthesized and characterized by 1H NMR spectroscopy, elemental analysis, and mass spectrometry. The pH effects on UV-Vis absorption and emission spectra of the complex have been studied, and the ground- and excited-state acidity ionization constant values have been derived. The calf thymus (ct) DNA binding properties of the complex have been investigated with UV-Vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The molecular structures and electronic properties of [Ru(bpy)2(Htip)]2+ and deprotonated form [Ru(bpy)2(tip)]+ have also been investigated by means of density functional theory calculations in an effort to understand the DNA binding properties. The results suggest that the complex undergo three-step successive protonation/deprotonation reactions with one of which occurring over physiological pH region, and act as a ct-DNA intercalator with an intrinsic DNA binding constant value on 105 M−1 order of magnitude that is insensitive to pH.  相似文献   

16.
Abstract

The chemistry of Co(II) complexes showing efficient light induced DNA cleavage activity, binding propensity to calf thymus DNA and antibacterial PDT is summarized in this article. Complexes of formulation [Co(mqt)(B)2]ClO4 1–3 where mqt is 4-methylquinoline-2-thiol and B is N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz 3) have been prepared and characterized. The DNA-binding behaviors of these three complexes were explored by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes 1, 2 and 3 were determined to be 1.6?×?103?M?1, 1.1?×?104?M?1 and 6.4?×?104?M?1 respectively. The experimental results suggest that these complexes interact with DNA through groove binding mode. The complexes show significant photocleavage of supercoiled (SC) DNA proceeds via a type-II process forming singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against E. coli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.  相似文献   

17.
The present study reports a detailed investigation into the interaction of [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+ with transferrin, the key protein for the transport of Fe3+ in blood plasma; its cycle holds promise as an attractive system for strategies of drug targeting to tumor tissues. This can allow us to understand further the role of both complexes as sensitizers in photodynamic therapy (PDT). Chromium(III) complexes, [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+, (phen = 1,10-phenanthroline and dppz = dipyridophenazine), where dppz is a planar bidentate ligand with an extended π system, have been found to bind strongly with apotransferrin (apoTf) with an intrinsic binding constant, Kb, of (1.8 ± 0.3) × 105 M− 1 and (1.1 ± 0.1) × 105 M− 1 at 299 K, for apoTf-[Cr(phen)2(dppz)]3+ and apoTf-[Cr(phen)3]3+, respectively. The interactions of apoTf with the different Cr(III) complexes were assessed employing UV-visible absorption, fluorescence and circular dichroism spectroscopy. The relative fluorescence intensity of the protein decreased when the increasing concentration of Cr(III) complex was added, suggesting that perturbation around the Trp and Tyr residues took place. The analysis of the thermodynamic parameters ΔG, ΔH, ΔS indicated that the presence of the Cr(III) complex stabilizes the protein with a strong entropic contribution. The binding distances and transfer efficiencies for apoTf-[Cr(phen)2(dppz)]3+ and apoTf-[Cr(phen)3]3+ binding reactions were calculated according to Föster theory of non-radiation energy transfer. All these experimental results suggest that [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+ bind strongly to apoTf indicating that this protein could act as a carrier of these complexes for further applications in PDT.  相似文献   

18.
In our search for new DNA intercalating ligands, a novel bifunctional intercalator 11-(9-acridinyl)dipyrido[3,2-a:2′,3′-c]phenazine, acdppz (has two potentially effective intercalators via dipyridophenazine(dppz) and acridine which are linked together via C-C bond) and its corresponding Ru(II) polypyridyl complex [Ru(phen)2(acdppz)]2+ (where phen = 1,10-phenanthroline) have been synthesized and characterized. The electrochemical behaviors of the ligand and its complex have been thoroughly examined. The structure of acdppz and [Ru(phen)2(acdppz)]2+ were determined by X-ray crystallography. From the crystal structure of the complex, we found that the dppz moiety is not coplanar with the acridine ring, having a dihedral angle of 64.79 in the acdppz. The selected bond lengths and angles for the crystal structure of [Ru(phen)2(acdppz)]2+ were compared to the geometry-optimized molecular structure of [Ru(phen)2(acdppz)]2+ derived by Gaussian. The interaction of [Ru(phen)2(acdppz)]2+ with calf-thymus (CT) DNA was investigated by absorption and viscometry titration, thermal denaturation studies. The above measurements indicated that the complex binds less strongly with the CT DNA due to the intercalation by the ruthenium bound acdppz with an intrinsic binding constant of 2.6 × 105 M−1. Molecular-modeling studies also support an intercalative mode of binding of the complex to the model duplex d(CGCAATTGCG)2 possibly from the major groove with a slight preference for GC rich region. Additionally, the title complex promotes the cleavage of plasmid pBR322 DNA upon irradiation under aerobic conditions.  相似文献   

19.
Yu H  Wang X  Fu M  Ren J  Qu X 《Nucleic acids research》2008,36(17):5695-5703
Here, we report the first example that one enantiomer of a supramolecular cylinder can selectively stabilize human telomeric G-quadruplex DNA. The P-enantiomer of this cylinder has a strong preference for G-quadruplex over duplex DNA and, in the presence of sodium, can convert G-quadruplexes from an antiparallel to a hybrid structure. The compound's chiral selectivity and its ability to discriminate quadruplex DNA have been studied by DNA melting, circular dichroism, gel electrophoresis, fluorescence spectroscopy and S1 nuclease cleavage. The chiral supramolecular complex has both small molecular chemical features and the large size of a zinc-finger-like DNA-binding motif. The complex is also convenient to synthesize and separate enantiomers. These results provide new insights into the development of chiral anticancer agents for targeting G-quadruplex DNA.  相似文献   

20.
A novel ruthenium(II) complex of dipyridophenazine (DPPZ) with the ancillary ligand imidazole[4,5-f] [1,10]phenanthroline (IP), [Ru(IP)2(DPPZ)] (PF6)2, has been synthesized and characterized by elemental analysis, 1D and 2D 1H NMR, fast-atom bombardment mass spectra (FABMS), electronic spectroscopy and cyclic voltammetry. The DNA-binding properties of the complex were studied by spectroscopic methods. The intrinsic binding constant, K =2.1 × 107M−1, of the complex to calf thymus DNA has been determined by absorption titration in 5 mmol dm−3 Tris-HCl, 50 mmol dm−3 NaCl buffer (pH 7.0). The excited state lifetimes and luminescence quenching with [Fe(CN)6]4− as the quencher in the presence of DNA were also tested and mono-exponentiality was observed for the emission decay curves. Viscosity measurements together with the optical titrations unambiguously proved that the complex bound with DNA intercalatively and that the binding affinity to DNA was several times larger than that of the parent complex [Ru(bpy)2(DPPZ)]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号