首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pigmented epithelial cells (PECs) were dissociated from eyes of 8- to 9-day-old chick embryos and were cultured in EdF medium (Eagle's MEM supplemented with dialyzed fetal bovine serum) containing phenylthiourea (PTU) and testicular hyaluronidase (HUase). The PECs rapidly lost melanosomes as they proliferated and dedifferentiated in culture. These dedifferentiated PECs (dePECs) which did not manifest any identifiable specificity could be directed to one of two different differentiated phenotypes; viz., lens or pigment cells, depending upon subsequent culture conditions. Almost all dePECs began to synthesize melanin and redifferentiated to PECs by Day 10 of culture with EdF medium containing ascorbic acid (AsA). In contrast, the sister population of dePECs, when cultured at extremely high cell density with EdF medium containing PTU, HUase and AsA, synthesized delta-crystallin which is specific for lens. This transdifferentiation into lens cells occurred by Day 15 of culture. Using this culture system we are able to produce a homogeneous cell population with the potential for synchronous differentiation into either lens or pigment cell phenotype. The system is useful for studying mechanisms involved in cellular metaplasia.  相似文献   

2.
Based on studies of wolffian lens regeneration in the newt, in which the lens can be regenerated from the iris pigmented epithelium, we have shown by cell culture studies that the capacity of lens transdifferentiation is not limited to the newt cells, but widely conserved in pigmented epithelial cells (PECs) of chick and quail embryos and even of human fetuses. Recently, we have established a unique in vitro model system of chick embryonic PECs. In this culture system we are able to control each step of transdifferentiation from PECs into lens cells by regulating culture conditions and to produce a homogeneous cell population with potential for synchronous differentiation into either lens or pigment cell phenotype. These multipotent (at least bipotent) cells showed cellular characteristics resembling neoplastic cells in many ways. They did not express both lens and pigment cell specific genes analyzed so far, except δ-crystallin gene, which is expressed in developing lens of chick embryos. It has been proved by application of cell culture procedures of the system that PECs dissociated from fully-grown human eyes readily transdifferentiated into lens phenotypes in the manner observed in chick embryo PECs. In addition, we could predict that molecules detected in either cell surface or intercellular space stabilized the differentiated state of PECs in the newt and that the loss of these molecules might be one of the key steps of lens regeneration from the iris epithelium.  相似文献   

3.
A monoclonal antibody (MC/1) was constructed against melanosomes purified from the chicken pigmented epithelial cells (PECs) in order to characterize the differentiative phenotypes of PEC in the process of transdifferentiation into lens cells. Immunofluorescent studies revealed that MC/1 antibody specifically stains both retinal PECs in the eye and melanocytes in the skin, of chicken embryos. Immunoelectron microscopy showed that the antigen molecules are located on the peripheral region of the melanosomal matrix. A single protein band with an apparent molecular weight of 115,000 was labelled by MC/1 in Western blotting. The 115 kDa polypeptide identified by MC/1 is considered to be a member of the melanosomal matrix proteins. The maintenance of specificity of pigment cell nature is followed in the system of transdifferentiation of PEC into lens in vitro, utilizing 115 kDa protein as a marker. In the dedifferentiated PECs, this protein was undetectable.  相似文献   

4.
5.
In cultured cells of the Bomirski Ab amelanotic hamster melanoma line, the substrates of tyrosinase, L-tyrosine, and L-DOPA induce the melanogenic pathway. In this report, we demonstrate that these substrates regulate the subcellular apparatus involved in their own metabolism and that this regulation is under the dynamic control of one of the components of this apparatus, tyrosinase, via tyrosine hydroxylase activity. Culturing cells with nontoxic but melanogenically inhibitory levels of phenylthiourea (PTU; 100 microM) strongly inhibits induction of both the tyrosine hydroxylase and DOPA oxidase activities of tyrosinase by L-tyrosine (200 microM) but has no effect on the induction of either activity by L-DOPA (50 microM). De novo synthesis of premelanosomes precedes the onset of tyrosine-induced melanogenesis. Thereafter, increases in the population of melanosomes (likewise inhibited by PTU) correlate positively with increases in tyrosinase activity induced by L-tyrosine. Melanogenesis induced by L-DOPA in the absence of L-tyrosine is rate-limited not by tyrosinase but by inadequate melanosome synthesis. Our findings indicate that in Bomirski Ab amelanotic hamster melanoma cells the synthesis of the subcellular apparatus of melanogenesis is initiated by L-tyrosine and is regulated further by tyrosinase and L-DOPA, which serves as a second messenger subsequent to tyrosine hydroxylase activity.  相似文献   

6.
7.
Manganese transport into yeast cells is energy-dependent. It is dependent on endogenous sources of energy and is inhibited by olygomycin (12.5-25 microgramg/ml), 2,4-dinitrophenol (1 mM), 2-deoxyglucose (1-50 mM) and sodium azide (1-10 mM), but is stimulated by cyanide and glucose. The stimulating effect of glucose is eliminated by N-ethylmaleimide and iodoacetate, which apparently inhibit the transport of glucose itself. About 75% of the manganese accumulated in the presence of glucose is found in yeast protoplasts and nearly 25% in the cell walls. A major portion of the accumulated manganese is found in vacuoles. The concentration of osmotically free manganese in the cytosol did not exceed 2 mM, but the concentration in vacuoles was up to 14 mM. The tonoplast is assumed to have a transport system for divalent cations, thereby regulating their concentration in the cytosol.  相似文献   

8.
1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 μM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.  相似文献   

9.
Among various proteinase inhibitors, N-acetyl-L-tyrosine ethyl ester (ATEE), a chymotrypsin substrate analog, and N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), a trypsin inhibitor, showed significant inhibitory effects on insulin stimulated glucose transport in rat adipocytes. ATEE did not affect insulin binding, but inhibited insulin internalization. In intact adipocytes, ATEE inhibited tyrosine phosphorylation of the beta-subunit of the insulin receptor, a 170 kDa protein and a 60 kDa protein at almost the same concentration (ID50 = 0.24 +/- 0.05 mM, n = 4, mean +/- S.E.), but in a plasma membrane fraction, ATEE did not appreciably inhibit the tyrosine phosphorylation of the beta-subunit of the insulin receptor, TLCK did not inhibit insulin binding. At 0.25 mM, TLCK did not inhibit insulin internalization, but inhibited 70% of the insulin-stimulated glucose transport (ID50 = 0.19 +/- 0.02 mM, n = 7). TLCK inhibited insulin internalization at more than 0.25 mM. TLCK did not inhibit the tyrosine phosphorylation of the beta-subunit of the insulin receptor in intact cells or in the plasma membrane fraction. In intact cells, TLCK inhibited the phosphorylation of the 60 kDa protein and simultaneously it stimulated the phosphorylation of the 170 kDa protein more than 3-fold. These results indicate that there are at least two sites in the insulin-induced signal transduction pathway where proteinase inhibitors act to suppress the insulin signal transduction. A major ATEE site is very close to phosphorylation of the beta-subunit of the insulin receptor. On the other hand, TLCK inhibits a step(s) in the signal transduction pathway after the insulin receptor but before the glucose transporter.  相似文献   

10.
Our previous results indicated that cytochrome P450 destruction by benzene metabolites was caused mainly by benzoquinone (Soucek et al., Biochem. Pharmacol. 47 (1994) 2233-2242). The aim of this study was to investigate the interconversions between hydroquinone, semiquinone, and benzoquinone with regard to both spontaneous and enzymatic processes in order to test the above hypothesis. We have also studied the participation of hydroquinone and benzoquinone in OH radicals formation and lipid peroxidation as well as the role of ascorbate and transition metals. In buffered aqueous solution, hydroquinone was slowly oxidized to benzoquinone via a semiquinone radical. This conversion was slowed down by the addition of NADPH and completely stopped by microsomes in the presence of NADPH. Benzoquinone was reduced to semiquinone radical at a significantly higher rate and this conversion was stimulated by NADPH and more effectively by microsomes plus NADPH while semiquinone radical was quenched there. In microsomes with NADPH. both hydroquinone and benzoquinone stimulated the formation of OH radicals but inhibited peroxidation of lipids. Ascorbate at 0.5-5 mM concentration also produced significant generation of OH radicals in microsomes. Neither hydroquinone nor benzoquinone did change this ascorbate effect. On the contrary, 0.1-1.0 mM ascorbate stimulated peroxidation of lipids in microsomes whereas presence of hydroquinone or benzoquinone completely inhibited this deleterious effect of ascorbate. Iron-Fe2+ apparently played an important role in lipid peroxidation as shown by EDTA inhibition, but it did not influence OH radical production. In contrast, Fe3+ did not influence lipid peroxidation, but stimulated OH radical production. Thus, our results indicate that iron influenced the above processes depending on its oxidation state, but it did not influence hydroquinone/benzoquinone redox processes including the formation of semiquinone. It can be concluded that interconversions between hydroquinone and benzoquinone are influenced by NADPH and more effectively by the complete microsomal system. Ascorbate, well-known antioxidant produces OH radicals and peroxidation of lipids. On the other hand, both hydroquinone and benzoquinone appear to be very efficient inhibitors of lipid peroxidation.  相似文献   

11.
Murine melanoma cells treated with the melanocyte-stimulating hormone (MSH) family of peptides undergo differentiation characterized by enhanced melanogenesis and altered morphology. These effects are mediated via the adenylate cyclase-cAMP pathway leading to activation of protein kinase A (PKA). We have discovered that inhibition of a post-translational modification of chromatin proteins, viz. poly(ADP-ribosylation), also induces melanogenesis and differentiation in these cells. A range of competitive inhibitors (benzamide and its derivatives) of the nuclear enzyme poly(ADP-ribose) polymerase (PADPRP; EC 2.4.2.30) was utilized, and their ability to induce melanogenesis reflected their potency as PADPRP inhibitors. These compounds induced melanogenesis at low doses (20 microM-2 mM) which did not affect cell growth or viability. Induction of melanogenesis was not attributable to inhibition of cyclic nucleotide phosphodiesterase by these compounds. MSH treatment caused a transient rise in cAMP levels (up to 200-fold by 5 min and returning to near basal levels by 5 h). It also stimulated PKA activity up to 5-fold, and the temporal kinetics of this activation mirrored the changes in cAMP levels. In comparison, the PADPRP inhibitors had no effect on either of these processes. These data constitute a novel demonstration of a cAMP-independent mechanism for the induction of melanoma cell differentiation, including melanogenesis.  相似文献   

12.
The transport of ascorbate into cultured bovine retinal pigment epithelial (RPE) cells is reported. Primary or subcultured RPE cells were incubated in the presence of 10-500 microM L-[carboxyl-14C]-ascorbate for various periods of time. Accumulation of ascorbate into RPE cells followed a saturable active transport with a Km of 125 microM and a Vmax of 28 pmole/micrograms DNA/min. RPE intracellular water was calculated to be 0.8 pL/cell, and the transported cellular ascorbate concentration was 7.5 +/- 0.8 mM. Replacement of 150 mM NaCl in the incubation media with choline-Cl strongly inhibited (80 +/- 8%) ascorbate uptake into cultured RPE cells. Although the depletion of cellular ATP by 2,4-dinitrophenol and the inhibition of Na+-K+-ATPase by ouabain reduced ascorbate transport into RPE significantly, active transport of ascorbate was not entirely inhibited by these metabolic inhibitors. The ascorbate analogue, D-isoascorbate, competitively inhibited ascorbate transport into cultured RPE with a Ki of 12.5 mM. Cells grown in the presence of 5 to 50 mM alpha-D-glucose in the growth media did not differ in their ability to transport ascorbate. In contrast, the presence of alpha-D-glucose or its nonmetabolizable analogues, 3-0-methyl-glucose, alpha-methyl-glucose, and 2-deoxy-glucose, but not L-glucose or beta-D-fructose, in the incubation media inhibited ascorbate transport. myo-Inositol (10 or 20 mM) also inhibited ascorbate transport into RPE cells. The active uptake of ascorbate into cultured RPE cells was primarily coupled to the movement of sodium ion down its electrochemical gradient. A bifunctional, cotransport carrier possessing an ascorbate-binding site and a sodium-binding site may be involved in the ascorbate uptake system. The inhibition of ascorbate uptake by sugars appeared to be heterologous in nature, occurring between two distinct carrier systems, both of which were dependent on the sodium ions.  相似文献   

13.
14.
Stimulation of Phosphoinositide Hydrolysis by Serotonin in C6 Glioma Cells   总被引:5,自引:3,他引:2  
5-Hydroxytryptamine (serotonin or 5-HT) stimulated the incorporation of 32Pi into phosphatidylinositol (PI) but not into polyphosphoinositides in C6 glioma cells with an EC50 of 1.2 X 10(-7) M. The phosphoinositide response was blocked by the 5-HT2 antagonists ketanserin and spiperone but inhibited only partly by methysergide and mianserin. Atropine, prazosin, and yohimbine did not block the response, whereas fluphenazine and haloperidol did so partially but also inhibited basal incorporation by approximately 30%. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin did not cause stimulation. Incubation with 5-HT (1 microM) for 1 h increased the incorporation of [2-3H]myoinositol into all phosphoinositides but not into inositol phosphates (IPs). Li+ alone at 10 mM increased labeling in inositol bisphosphate (IP2) and trisphosphate (IP3), whereas labeling in IP and phosphoinositides remained unaltered. Addition of 5-HT had no effect on this increase. Mn2+ at 1 mM enhanced labeling in PI, PI-4-phosphate, lyso-PI, glycerophosphoinositol, and IP, but the presence of 5-HT again did not cause further stimulation. 5-HT also stimulated the release of IPs in cells prelabeled with [2-3H]myo-inositol, incubated with LiCl (10 mM) and inositol (10 mM), and then exposed to 5-HT (1 microM). Radioactivity in IP2 and IP3 was very low, was stimulated approximately 50% as early as 30 s, and remained elevated for at least 20 min. Radioactivity in IP was at least 10 times as high as in IP3 but was increased only from 3 min on with a peak at 20 min, when the elevation was approximately 40 times that in IP3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The equilibrium exchange of [14C]urea and ethylene glycol was measured using a new type of fast flow system. Approximately equal volumes of saline and air were mixed to form a segmented fluid stream into which 14C-loaded red cells are injected. The stream flows through three filter chambers which allow sampling of the 14C in the extracellular fluid at three time points. The chambers are designed so that they do not disrupt the segmented bubble pattern. The alternating air and saline segments prevent laminar dispersion in the flowing stream and ensure good mixing at the injection and sampling sites. The equilibrium exchange of both urea and ethylene glycol showed saturation kinetics. The maximum permeability (Po) measured in the limit of zero solute concentration is 1.6 X 10(-3) cm/s for urea and 4.8 X 10(-4) cm/s for ethylene glycol (T = 23 degrees C). The apparent dissociation constant (Km) was 218 mM for urea and 175 mM for ethylene glycol. The Po for thiourea is 2.3 X 10(-6) cm/s and the Km is 19 mM. Urea and thiourea inhibit the transport of each other and the inhibition constant (KI) is approximately equal to the Km for both compounds. 53 other analogues of urea were screened for their inhibition of urea or thiourea transport. Several analogues [e.g., 1-(3,4-dichloro-phenyl)-2-thiourea] had a KI in the range of 0.03 mM. The affinity of the inhibitor increased as it was made more hydrophobic. The urea analogues did not significantly inhibit the ethylene glycol or osmotic permeability. Glycerol inhibited ethylene glycol permeability with a KI of 1,200 mM.  相似文献   

16.
Anisaldehyde, a melanogenesis potentiator   总被引:1,自引:0,他引:1  
Anisaldehyde (4-methoxybenzaldehyde), previously reported as a tyrosinase inhibitor, did not inhibit melanogenesis in cultured B16-F10 melanoma cells but rather enhanced it. This adverse effect of anisaldehyde was accompanied by melanocytotoxicity in a dose-dependent manner up to 2 mM. The melanin content per cell at 1 mM was increased 5-fold compared to control and morphological observations showed the deposition of melanin pigments. Anisaldehyde was also examined against cultured human A375 melanoma cells.  相似文献   

17.
The effects of ten amiloride analogues on Na+-H+ exchange in rabbit kidney medulla microsomes have been examined. Most of the analogues appeared to inhibit Na+ uptake into the microsomes more effectively than did amiloride either in the presence or absence of a pH gradient. However, the analogues were also capable of stimulating Na+ efflux from the microsomes at concentrations somewhat higher than the concentrations at which they inhibited Na+ influx. The concentrations at which the analogues stimulated Na+ efflux were about 2-4-times higher than the concentrations at which they blocked influx. This suggested that the two processes were related. The analogues that stimulated efflux most effectively (the 5-N-benzyl-amino analogue of amiloride and the 5-N-butyl-N-methylamino analogue) were shown to induce completely reversible effects. These analogues did not stimulate L-[3H]glucose efflux from medulla microsomes which ruled out nonspecific vesicle destruction or reversible detergent effects. These analogues also induced Na+ efflux from microsomes in the presence of high concentrations of added buffer, which ruled out weak-base uncoupling effects. The possibility exists that these analogues are carried into the microsomes via the Na+-H+ exchange protein and that this permits them to both block Na+ influx into the microsomes and stimulate Na+ efflux as well.  相似文献   

18.
Li Z  Ptak D  Zhang L  Walls EK  Zhong W  Leung YF 《PloS one》2012,7(6):e40132
Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos.  相似文献   

19.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

20.
Pigmented epithelial cells isolated from 8-9-day-old chick embryos can transdifferentiate into lens-like cells at the terminal period of the third generation of culture. However, efficiency of this transdifferentiation is usually rather low. Phenylthiourea, a potent inhibitor of melanin synthesis, effectively enhances transdifferentiation of pigmented epithelial cells into lens-like cells in vitro. Lentoid bodies began to appear in the multilayered region of primary cultures of pigmented epithelial cells maintained in medium containing phenylthiourea at concentrations between 0.5 and 1.0 mM. Furthermore, the enhancing effect of phenylthiourea can be amplified with testicular hyaluronidase. Under these conditions, pigmented epithelial cells grow vigorously and lose their differentiative properties, efficiently switching their phenotype into lens-like cells some 20 days after initiation of culture in the presence of both substances. Semiquantitative analysis revealed that testicular hyaluronidase amplified the effect of phenylthiourea more than 100-fold. It has been suggested that phenotypic expression of pigmented epithelial cells during transdifferentiation can be regulated by manipulating the microenvironment in which these cells reside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号