首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An attempt was made to identify some of the hormonal factors that control adventitious root formation in our Prunus avium micropropagation system in order to improve rooting in difficult-to-root genotypes. Changes in endogenous contents of free polyamines were determined at intervals during auxin-induced rooting of shoot cultures. Accumulation of putrescine and spermidine peaked between days 9 and 11. Spermine was only present in traces, Exogenously supplied putrescine or spermine (50-500 μM), in the presence of optimal or suboptimal levels of indolebutyric acid (IBA), had no effect on rooting percentage or root density, except for spermine at 500 μM. At this external concentration spermine caused a substantial accumulation in both free spermine and putrescine. The use of several inhibitors of polyamine biosynthesis, namely α-difluoromethylornithine (DFMO), α-difluoromethylarginine (DFMA), dicyclohexylammonium sulphate (DCHA) and methylglyoxal-bis-guanyl-hydrazone (MGBG) alone or in combination in the 0.1 to 5 μM range, resulted in an inhibition of rooting that was partially reversed by the addition of the corresponding polyamine. Cellular polyamine levels were significantly reduced by DFMO and DFMA but not by DCHA and MGBG, Labeled putrescine incorporation into spermidine increased somewhat in the presence of the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). A system based on [3,4-14C]methionine incorporation was used to measure ethylene synthesis by the in vitro cultured shoots. Label incorporation was drastically reduced by 10 μM AVG and increased 3.5-fold in the presence of 50 μM IBA with respect to controls (no IBA). Labeled methionine incorporation into spermidine increased to some extent when ethylene synthesis was inhibited by AVG. Adding the ethylene precursor 1-aminocyclopropane-l-carboxylic acid (ACC) to the rooting medium significantly inhibited rooting percentage; AVG caused the formation of a greater number of roots per shoot but delayed their growth. Supplying the shoots with both compounds resulted in an intermediate rooting response, in which both rooting percentage and root density were affected. These results indicate that polyamines may play a significant role at least in some stages of root formation. The polyamine and ethylene biosynthetic pathways seem to be competitive but under our conditions, the enhancement of one pathway when the other was inhibited, was not dramatic. Although IBA promoted ethylene synthesis, AVG, which drastically reduced it, also promoted root formation. Thus, the auxin effect on root induction cannot be directly related to its ability to enhance ethylene synthesis.  相似文献   

2.
The in vitro micropropagation of potato (Solanum tuberosum L., var. Spunta) on media containing nor-spermidine (nor-SPD), a natural polaymine (PA) or dicyclohexlamine (DCHA), a spermidine synthesis inhibitor was studied to test their effects on plantlet growth and on the level of free cellular polyamines. The triamine nor-SPD, inhibited spermidine synthesis and substantially reduced root growth. DCHA strongly inhibited potato growth but surprisingly the free spermidine level seemed unaffected. These data suggest that dicyclohexylamine acts on the growth and on the development of plants by mechanisms unrelated to polyamine metabolism. Conversely, nor-spermidine was effective in reducing cellular spermidine content and seems to be a spermidine biosynthesis inhibitor in plants.  相似文献   

3.
We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. -Difluoromethylornithine (DFMO) and -difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.  相似文献   

4.
The effects of two inhibitors of polyamine (spermidine and spermine) biosynthesis, cyclohexylamine (CHA; 5 and 10 mM) and methylglyoxal(bis-guanylhydrazone) (MGBG; 0.1, 0.5 and 1 mM), on the organogenic response in vegetative bud-forming tobacco (Nicotiana tabacum L. cv. Samsun) thin layer explants were evaluated micro- and macroscopically at different times during culture. The final number of buds formed and the percentage of organogenic explants was significantly reduced by both inhibitors, but much more so by MGBG than CHA. This inhibitory effect was already evident in MGBG-treated explants on day 5, in terms of the number of meristemoids per explant. On the contrary, in the presence of CHA, the number of meristemoids on day 5 was higher than that in the controls. Between days 9 and 13, meristemoid formation slowed down considerably in inhibitor-treated explants compared with controls. On day 13, the number of bud primordia was similar in control and CHA-treated explants, but significantly lower in MGBG-treated explants. This inhibitor also induced peculiar cytohistological events, such as a reduced formation of oval-shaped cell aggregates on the explant surface and more frequent cases of nucleolar extrusion, while CHA led to the appearance of hypertrophic epidermal cells; callus formation at the basal end of the explant and xylogenesis were also affected by the inhibitors. Ethylene biosynthesis, measured as [ C]methionine incorporation, was stimulated 2- (day 2) to 3-fold (15 h) by 0.5 mM MGBG, whereas CHA (10 mM) had little effect and aminoethoxyvinylglycine (AVG; 0.1 μM), an ethylene synthesis inhibitor, was strongly inhibitory. In control explants, the incorporation of labelled methionine into ethylene and spermidine followed an inverse trend up to day 8. In these explants, free putrescine increased 32-fold and spermidine increased about 10-fold between days 0 and 8. Trichloroacetic acid (TCA)-soluble conjugated putrescine also accumulated dramatically during culture. While CHA provoked a decline in spermidine levels, MGBG caused an unexpected increase in free spermidine and spermine titres; however, its most conspicuous effect was on the further enhancement of putrescine conjugate accumulation, while CHA and AVG had the opposite effect. Results are discussed in view of establishing a putative link between MGBG-enhanced ethylene synthesis, increased conjugate titres and inhibition of meristemoid formation.  相似文献   

5.
The effects of methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of polyamine biosynthesis were studied on tuberization and cellular polyamine content using in vitro Solanum tuberosum (cv Binjte) plants. When MGBG was added to the culture medium, it produced a partial inhibition of the growth of stems and leaves; it totally blocked rhizogenesis and strongly stimulated tuber formation. Morphogenetic effects of MGBG were correlated to a 40 % decrease in free putrescine, spermidine, spermine content of the leaves and to a 28 % decrease in spermidine titer of the stems. In the tubers, this inhibitor did not change the free polyamine titer but increased by up to 85 % the titer of conjugated putrescine, spermidine, spermine. When the plants were grown in the dark, MGBG produced, like benzyladenine, a stimulation of the rate of tuberization and enhanced the content of conjugated polyamines in the tuber. These results support the hypothesis that polyamines play an important role in the morphogenesis of potato plants. The role of polyamine conjugation in tuber development is discussed.  相似文献   

6.
The spermidine synthesis inhibitor methyl bis-(guanylhydrazone) was found to reduce spore germination, hyphal and mycelial growth in Alternaria consortiale. The addition of spermidine to the culture medium resulted in a promotion of growth. Methyl bis-guanylhydrazone and spermidine did not change ethylene production.The data suggest that spermidine plays a role in the development of Alternaria consortiale independent of ethylene.Abbreviations MGBG methyl bis-(guanylhydrazone) - SPD spermidine - ACC 1-aminocyclopropane-1-carboxylic acid - PDA potato dextrose agar  相似文献   

7.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

8.
Daily administration of dicyclohexylamine (DCHA), an inhibitor of spermidine synthase, to neonatal rats produced a dose-dependent depletion of brain spermidine, accompanied by a rise in putrescine and spermine. Despite continued DCHA treatment, levels of all three polyamines returned toward normal within two weeks. alpha-Difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, had a much more profound and persistent effect on spermidine and also depleted putrescine throughout drug administration; furthermore, DFMO prevented both the elevation of putrescine caused by DCHA and the eventual restitution of spermidine levels. Although a similar pattern of effects was seen in the heart, the time course of onset of DCHA-induced alterations in polyamine levels and the rapidity of subsequent adaptation were considerably different from those in brain. The net activity of DCHA toward polyamines in developing tissues thus involves the direct actions of the drug on spermidine synthesis in combination with compensatory metabolic adjustments made by each tissue to polyamine depletion.  相似文献   

9.
10.
Methylglyoxal bis(guanyl hydrazone) (MGBG) and the related diamidine compounds berenil and pentamidine inhibited multiplication of A. culbertsoni. The growth inhibition by MGBG (2.5 mM) in the peptone medium was accompanied by the disappearance of spermidine and a marked reduction in the level of diaminopropane. MGBG and berenil completely inhibited growth in a chemically defined medium at 1 mM and 1-2 microM concentration, respectively. However, there was no decrease in the polyamine levels in the early stages of growth inhibition by these agents. Uptake of putrescine, spermidine and spermine by A. culbertsoni has been demonstrated but addition of exogenous polyamines did not reverse the growth inhibitory action of MGBG and berenil. Inhibition of S-adenosylmethionine decarboxylase and decrease in polyamine synthesis do not seem to be the primary targets for the antiamoebic action of MGBG and berenil.  相似文献   

11.
In-vitro treatment of preimplantation mouse embryos with spermine and spermidine biosynthesis inhibitor, methylglyoxal-bis-(guanylhydrazone) (MGBG), arrested embryo development at the 8-cell or morula stage. In addition, the embryo DNA synthetic rate, as measured by [3H]thymidine incorporation, was strongly inhibited. The inhibition of blastocyst formation and DNA synthesis by MGBG was readily reversible by an exogenous supply of spermine and/or spermidine to the culture medium. DL-alpha-Methylornithine or DL-alpha-difluoromethylornithine (alpha-DFMO), inhibitors of putrescine biosynthesis, had no effect on embryos cultured for 1 or 2 days, but on the 3rd day embryo DNA synthesis was significantly depressed in the presence of alpha-DFMO. These observations suggest that, during early development of the preimplantation mouse embryo, spermine and spermidine are involved in regulation of embryo growth and DNA synthesis. They may also indicate a role of putrescine at a later stage of mouse embryo development.  相似文献   

12.
Rajam B  Rajam MV 《Mycopathologia》1996,133(2):95-103
Polyamine (PA) biosynthesis inhibitors, difluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal bis-(guanylhydrazone) (MGBG) and bis-(cyclohexylammonium) sulphate (BCHA) have been tested for their effects on colony diameters at different intervals after inoculation of four plant pathogenic fungi (Helminthosporium oryzae, Curvularia lunata, Pythium aphanidermatum and Colletotrichum capsici). All these inhibitors, except DFMA had strongly retarded the growth of four fungi in a dose- and species-dependent fashion, and H. oryzae and C. lunata were found to be most sensitive to the effects of PA inhibitors. P. aphanidermatum and C. capsici were relatively insensitive and required rather high concentrations of inhibitors to get greater inhibition of mycelial growth, except DFMA which had stimulatory effect on the growth of these two fungi. However DFMA had greatly suppressed the growth of H. oryzae and C. lunata. The effect was generally more pronounced with MGBG than with DFMO and BCHA, and 1 mM Put completely prevented the inhibitory effects of 1 and 5 mM DFMO. Analysis of free and conjugated PAs in two sensitive fungi (H. oryzae and C. lunata) revealed that Put was present in highest concentrations followed by Spd and Spm and their levels were greatly reduced by DFMO application, and such inhibitions were totally reversed by exogenously supplied Put; in fact, PA titers were considerably increased by 1 mM Put alone and in combination with 1 mM DFMO. These results suggest that PA inhibitors, particularly DFMO and MGBG may be useful as target-specific fungicides in plants.  相似文献   

13.
Spermine enhances the number of adventitious roots developingon stem cuttings of Phaseolus aureus Roxb. This effect is observedwhen spermine is supplied alone to cuttings or in the presenceof indolebutyric acid (IBA). That concentration most effectivein inducing the rooting response also enhances root growth.Other concentrations tested were without effect on growth. Spermidinedoes not influence root number or growth except at high concentration,when it is inhibitory to number only. Methylglyoxal bis(guanylhydrazone)(MGBG) inhibits rooting and root growth in the presence or absenceof IBA. Treatment of stem-cuttings with IBA leads to enhancedlevels of spermine, spermidine and putrescine in the hypocotylprior to development of any root primordia. MGBG reduces thelevels of spermine and spermidine whilst increasing the levelof putrescine. Furthermore, MGBG prevents the IBA-induced increasein spermine and markedly inhibits that in spermidine. Theseresults are consistent with an essential role for polyaminesand their metabolism in the early events which lead to adventitiousroot development. (Received January 10, 1983; Accepted March 17, 1983)  相似文献   

14.
Exogenous spermidine (Spd) and methylglyoxal bis(guanylhydrazone) (MGBG), a putative inhibitor of Spd synthesis, improved somatic embryo formation of Scots pine (Pinus sylvestris L.). The induced maturation due to MGBG and Spd was accompanied by significantly retarded proliferation growth and by reduction in the concentration of free polyamines compared to the control cultures. The action of MGBG revealed that it has a non-specific effect on the whole polyamine metabolism of Scots pine. Furthermore, at certain concentrations it may induce plant differentiation as well.  相似文献   

15.
Following growth stimulation of rat embryo fibroblast (REF) cells previously arrested in G1 by serum deprivation, there occurs a large increase in the synthesis of the polyamines putrescine, spermidine and spermine. Methylglyoxal bis(guanylhydrazone) (MGBG), a potent inhibitor of S-adenosylmethionine decarboxylase can block the accumulation of both spermidine and spermine over a period of several days. Under such conditions REF cells treated with MGBG will approximately double in number and then become growth-arrested again predominantly in the G1 phase of the cell cycle. REF cells therefore appear to contain sufficient spermidine and spermine to progress through one cell cycle before the intracellular levels of these polyamines is reduced sufficiently to arrest growth in the absence of continued polyamine synthesis. Limitation of intracellular polyamine levels is therefore not the mechanism by which deprivation of serum growth factors arrests cell growth. While continued growth is nevertheless dependent on polyamine synthesis, this cell type is capable of limited proliferation in its absence. Addition of spermidine or spermine to MGBG-arrested REF cells results in a rapid resumption of proliferation demonstrating that either polyamine can fulfill the role played by these polyamines in the growth process. Low levels of spermidine and spermine therefore arrest this cell type at a resriction point in G1 at which it is decided whether the intracellular level of these polyamines is sufficiently high to enable a cell to enter into and complete a new cell cycle. This polyamine-sensitive restriction point is considered to be analogous to the restriction point(s) in G1 at which serum and nutrient limitation act.  相似文献   

16.
The effects of aminoethoxyvinylglycine (AVG),1-aminocyclopropane- 1 -carboxylic acid (ACC), dicycyclohexylammonium sulfate (DCHA) and methylglyoxal bis-(guanylhydrazone) (MGBG) on induction of embryogenic competence from the nucellus of two mango genotypes, ‘Tutehau’ (polyembryonic) and ‘Tommy Atkins’ (monoembryonic), were compared. Induction of embryogenic competence in the explanted nucellus of ‘Tommy Atkins’ was more sensitive to AVG and DCHA than ‘Tutehau’. MGBG had no effect on induction of embryogenic competence of either genotype, and ACC suppressed somatic embryogenesis with both cultivars. Ethylene biosynthesis was greater from explanted ‘Tommy Atkins’ cultures. Reducing ethylene biosynthesis with AVG marginally increased the number of embryogenic cultures of ‘Tutehau’, but completely inhibited somatic embryogenesis in ‘Tommy Atkins’ cultures. Ethylene biosynthesis was stimulated by ACC in nonembryogenic cultures of both genotypes and in ‘Tommy Atkins’ embryogenic cultures, in which ethylene biosynthesis was ca 7 X greater than in ‘Tutegau’ embryogenic cultures. The greater sensitivity of ‘Tommy Atkins’ to the ethylene antagonist, AVG, may be due to its greater sensitivity to disturbance of ethylene biosynthesis and spermidine synthesis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The effects of the polyamines putrescine (PUT), spermidine (SPD), and spermidine (SPM) on the secretion of plasminogen activator (PA) and plasminogen activator inhibitor (PAI) were evaluated using cultured bovine aortic endothelial cells. All three polyamines enhanced PA secretion in a time- and dose-dependent manner, with a potency rank order of SPM greater than SPD greater than PUT. The PA stimulation required both RNA and protein synthesis, as evidenced by inhibition of polyamine-induced PA secretion by actinomycin D and cycloheximide. The inhibitors of polyamine biosynthesis methylglyoxal bis-(guanylhydrazone) (MGBG) and dl-(difluoromethyl) ornithine (DFMO) alone did not affect basal or polyamine-induced PA secretion, with the exception that MGBG reduced the effect of PUT. Polyamine-treated cells enhanced secretions of both tissue-type and urokinase-type PA. The results of the present study suggest that polyamines may play a role in the regulation of PA synthesis and secretion and that this function can be modified under pathophysiological conditions affecting cellular and tissue levels of polyamines.  相似文献   

18.
Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm ) combined with or without Si (0.83 mm ). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na+ accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1‐aminocyclopropane‐1‐carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up‐regulated by Si under salt stress. To further confirm the role of PA in Si‐mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si‐enhanced salt tolerance and the beneficial effect of Si in decreasing Na+ accumulation. These results indicate that PAs and ACC are involved in Si‐induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号