首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mycorrhizal status of water-impounding tank bromeliad epiphytes from three locales differing in altitude and moisture regime within Venezuelan cloud forest was examined. Species of vesicular-arbuscular mycorrhizal (VAM) fungi found in arboreal soils were compared to VAM fungi found in terrestrial soils. Sixteen of the 19 epiphytes examined for the presence of VAM fungi had roots with infection stages; 14 of these specimens showed growth of the fine endophyte Glomus tenue. Fine endophyte was the only VAM fungus found associated with epiphytes in the driest locale studied, while coarse VAM fungi (Gigaspora and Scutellospora spp.) were found at sampling locales receiving more moisture. Root infection was usually composed of intercellular hyphae and peletons; few arbuscules were observed. However, abundant extracellular hyphae were often observed tangled about roots in arboreal soil. It is concluded that epiphytic bromeliads probably benefit, at least periodically, from VAM fungi scavenging for sporadically available nutrients in arboreal soils. Glomus tenue may be particularly important as a colonizing VAM fungus in drier sites of Venezuelan cloud forest. The species composition of VAM fungi in arboreal soils was different to that of terrestrial soils sampled directly under epiphytic bromeliad perches, suggesting that VAM fungi species associated with bromeliads are dispersed to their hosts by vagile animal vectors.  相似文献   

2.
This article introduces reports concerning the occurrence of mycorrhizae on epiphytes in Costa Rica, Ethiopia, Venezuela, Malaysia, and Mexico. Association of vesicular-arbuscular mycorrhizal fungi with the roots of epiphytes is not well known. Vesicular-arbuscular mycorrhizal fungi (VAM) do occur in the canopy, but are uncommon except in certain sites and host taxa. Occurrence of VAM on epiphytes may be constrained by mineral nutrient availability and spatial heterogeneity in the canopy. Nevertheless, epiphytes present unique opportunities to study influences of mycorrhizae on vascular plant community composition and on the evolution of mycorrhizal associations.  相似文献   

3.
Arbuscular mycorrhizal fungi influence the growth, morphology, and fitness of a variety of plant species, but little is known of the arbuscular mycorrhizal (AM) fungal associations of plant species in forest canopies. Plant species' associations with AM fungi are most often elucidated by examining the roots for fungal structures; however, morphological data may provide a limited resolution on a plant's mycorrhizal status. We combined a traditional staining technique with a molecular marker (the 18S ribosomal gene) to determine whether or not a variety of epiphytic bromeliads form arbuscular mycorrhizal fungal associations. Using these methods we show that the epiphytic bromeliad Vriesea werkleana forms arbuscular mycorrhizal fungal associations with members of the genus Glomus. AM fungal sequences of this plant species formed three distinct clades nested within a larger Glomus clade; two of the clades did not group with any previously sequenced lineage of Glomus. Novel clades may represent novel species. Although Vriesea werkleana is associated with multiple AM fungal species, each individual plant is colonized by a single lineage. The combination of morphological and molecular methods provides a practical approach to the characterization of the mycorrhizal status of epiphytic bromeliads, and perhaps other tropical epiphytes.  相似文献   

4.
Vascular epiphytes are a conspicuous and highly diverse group in tropical wet forests; yet, we understand little about their mineral nutrition across sites. In this study, we examined the mineral nutrition of three dominant vascular epiphyte groups: ferns, orchids, and bromeliads, and their host trees from samples collected along a 2600 m elevational gradient in the tropical wet forests of Costa Rica. We predicted that the mineral nutrition of ferns, orchids, and bromeliads would differ because of their putative differences in nutrient acquisition mechanisms and nutrient sources—atmospherically dependent, foliar feeding bromeliads would have lower nitrogen (N) and phosphorous (P) concentrations and more depleted δ15N values than those in canopy soil-rooted ferns because canopy soil is higher in available N, and more enriched in δ15N than the atmospheric sources of precipitation and throughfall. We also predicted that epiphyte foliar chemistry would mirror that of host trees because of the likely contribution of host trees to the nutrient cycle of epiphytes via foliar leaching and litter contributions to canopy soil. In the same vein, we predicted that epiphyte and host tree foliar chemistry would vary with elevation reflecting ecosystem-level nutrients—soil N availability increases and P availability decreases with increasing elevation. Our results confirmed that canopy soil-rooted epiphytes had higher N concentrations than atmospheric epiphytes; however, our predictions were not confirmed with respect to P which did not vary among groups indicating fixed P availability within sites. In addition, foliar δ15N values did not match our prediction in that canopy soil-rooted as well as atmospheric epiphytes had variable signatures. Discriminant function analysis (DFA) on foliar measurements determined that ferns, orchids, and bromeliads are statistically distinct in mineral nutrition. We also found that P concentrations of ferns and orchids, but not bromeliads, were significantly correlated with those of host trees indicating a possible link in their mineral nutrition’s via canopy soil. Interestingly, we did not find any patterns of epiphyte foliar chemistry with elevation. These data indicate that the mineral nutrition of the studied epiphyte groups are distinct and highly variable within sites and the diverse uptake mechanisms of these epiphyte groups enhance resource partitioning which may be a mechanism for species richness maintenance in tropical forest canopies.  相似文献   

5.
Associations between plants and arbuscular mycorrhizal (AM) fungi are widespread and well-studied. Yet little is known about the pattern of association between clonal plants and AM fungi. Here we report on the pattern of mycorrhizal association within the rhizome systems of mayapple, Podophyllum peltatum. Mayapple is a long-lived understory clonal herb that is classified as obligately mycorrhizal. We found that while all mayapple rhizome systems maintained mycorrhizal associations, the percent colonization of roots by AM fungi differed among ramets of different age. The highest concentrations of AM fungi were in the roots of intermediate-aged ramets, while roots beneath the youngest ramet were not colonized. This pattern of ramet age or position-dependent colonization was observed in two separate studies; each conducted in a different year and at a different site. The pattern of AM fungal colonization of mayapple rhizome systems suggests that the mycorrhizal relationship is facultative at the ramet level. This conclusion is reinforced by our observation that augmentation of soil phosphate lowers root colonization by AM fungi. We also found that soil phosphate concentrations were depleted by ca. 1% under the same ramet positions where roots bore the highest AM fungal loads. Three non-exclusive hypotheses are proposed regarding the mechanisms that might cause this developmentally dependent pattern of mycorrhizal association.  相似文献   

6.
Factors influencing the niche differentiation of epiphytes have been determined for the epiphytic bromeliads that coexist in the seasonally dry forest of Chamela, Mexico. Over 40 percent of the bromeliad epiphytes were distributed in only 5 percent of the trees. The occurrence of compound leaves in host trees was highly correlated with abundance of epiphytes, as these allow scattered light to penetrate throughout the canopy. The effect of leaf type overrides the effect of bark type, the main factor determining seedling establishment in moist forests. Eight species had the atmospheric life form, while only two species had tanks, formed by overlapping leaf bases and associated to a lower drought tolerance. Distribution in the canopy is counter to that observed in moist forests, since tank species occur in the upper canopy. Tank life forms showed most annual carbon gain during the rainy season, when the newly leafed out trees provide shade to the lower canopy. Atmospheric species had photosynthetic activity for longer into the dry period, possibly supported by dew and fog events. Leaf angles, orientation, trichome, and stomata densities are discussed in relation to water and light use among the species with contrasting ecological strategies.  相似文献   

7.
The diversity of mycorrhizal fungi associated with an introduced weed-like South African orchid (Disa bracteata) and a disturbance-intolerant, widespread, native West Australian orchid (Pyrorchis nigricans) were compared by molecular identification of the fungi isolated from single pelotons. Molecular identification revealed both orchids were associated with fungi from diverse groups in the Rhizoctonia complex with worldwide distribution. Symbiotic germination assays confirmed the majority of fungi isolated from pelotons were mycorrhizal and a factorial experiment uncovered complex webs of compatibility between six terrestrial orchids and 12 fungi from Australia and South Africa. Two weed-like (disturbance-tolerant rapidly spreading) orchids — D. bracteata and the indigenous Australian Microtis media, had the broadest webs of mycorrhizal fungi. In contrast, other native orchids had relatively small webs of fungi (Diuris magnifica and Thelymitra crinita), or germinated exclusively with their own fungus (Caladenia falcata and Pterostylis sanguinea). Orchids, such as D. bracteata and M. media, which form relationships with diverse webs of fungi, had apparent specificity that decreased with time, as some fungi had brief encounters with orchids that supported protocorm formation but not subsequent seedling growth. The interactions between orchid mycorrhizal fungi and their hosts are discussed.  相似文献   

8.
Berch  S.M.  Allen  T.R.  Berbee  M.L. 《Plant and Soil》2002,244(1-2):55-66
Through traditional culturing and molecular characterization, we have determined that five putative species and 2 polyphyletic assemblages of fungi produce ericoid mycorrhizae in Gaultheria shallon, other Ericaceae and Epacridaceae. Using phylogenetic analysis of ITS2 sequences in GenBank, we have confirmed that most of these fungi occur in North America, Europe, and Australia. The low recovery rate of culturable ericoid mycorrhizal fungi from Gaultheria shallon may partly be explained by the fact that most mycorrhizal root segments contain an unculturable basidiomycete, revealed by direct amplification, cloning, and sequencing of LSU fungal DNA from root. Molecular characterization and phylogenetic analysis are powerful tools in revealing the geographic distribution and identity of ericoid mycorrhizal fungi.  相似文献   

9.
We examined the mycorrhizal type of 128 plant species in two patches of native vegetation of the Chaco Serrano Woodland, central Argentina, the largest dry forest area in South America. Of the 128 plant species investigated (belonging to 111 genera in 53 families), 114 were colonized by arbuscular mycorrhizal fungi (AM), orchid mycorrhizal associations were present in the five terrestrial orchid species analyzed, one ectomycorrhiza was only present in Salix humboldtiana Willd., and 96 harbored a dark septate endophyte (DSE) association. Co-occurrence of AM and DSE was observed in 88 plant species. We determine morphological types of arbuscular mycorrhizal fungi (Arum, Paris, and intermediate AM structures) and report the mycorrhizal status in 106 new species, 12 of which are endemic to central Argentina and two, Aa achalensis Schltr. and Buddleja cordobensis Griseb., are declared to be vulnerable species. Root colonization in the Chaco Serrano Woodland is widespread and should be considered in revegetation programs due to the deterioration of this particular ecosystem. Considering the predominance of AM and DSE associations and the various potential benefits that these associations may bring to plant establishment, they should receive special attention in conservation and reforestation of these woodlands.  相似文献   

10.
The identity of mycorrhizal fungi associated with the achlorophyllous orchid Epipogium roseum was investigated by DNA analysis. The fungi were isolated from each coiled hypha (peloton), and the ITS region of nuclear rDNA was sequenced. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Psathyrella or Coprinus in Coprinaceae. Those fungi are known as saprobes, using dead organic materials for a nutritive source. Large colonies of this orchid were frequently found around tree stumps or fallen logs. In such colonies, these decaying wood materials would be used as a large and persistent carbon source for the growth of this orchid. This is the first report of Coprinaceae as an orchid mycorrhizal fungi.  相似文献   

11.
Shrub willows (Salix spp.) form associations with arbuscular mycorrhizal (AM), ectomycorrhizal (EM) and dark septate endophytic (DSE) fungi. Willow root colonization by these three types of fungi was studied on a deglaciated forefront of Lyman Glacier, Washington, USA. Root colonization was low; less than 1% of the root length was colonized by AM and 25.6% by DSE. EM colonized 25% of the root tips and 19.4% of the root length. AM and DSE colonization were not related to distance from the present glacier terminus or to canopy cover. EM colonization increased with distance from the glacier terminus based on gridline intercept data but not on root tip frequency data. Availability of propagules in the substrate was low, but numbers of propagules increased with distance from the glacier terminus. The EM communities were dominated by three ascomycetes showing affinity to Sordariaceae in BLAST analyses. Other frequent taxa on the glacier forefront included species of Cortinariaceae, Pezizaceae, Russulaceae, Thelephoraceae and Tricholomataceae. When occurrence of individual taxa was used as a response variable to canopy cover, distance from the glacier terminus, and their interaction, four different fungal guilds were identified: 1) fungi that did not respond to these environmental variables; 2) fungi that occurred mainly in intercanopy areas and decreased with distance from the glacier terminus; 3) fungi that were insensitive to canopy cover but increased with distance from the glacier terminus; 4) fungi that occurred mainly under willow canopies and increased with distance from the glacier terminus. We suggest that fungal colonization is mainly limited by fungal propagule availability. Environmental conditions may also limit successful establishment of plant-fungus associations. We propose that the four EM guilds partly explain successional dynamics. The initial EM community comprises fungi that tolerate low organic matter and nitrogen environment (first and second guilds above). During later community development, these fungi are replaced by those that benefit from an increased organic matter and nitrogen environment (third and fourth guilds above).  相似文献   

12.
The effects of the herbicide tebuthiuron (0.36, 0.6, and 1.01 kg/ha in pellet form) on nontarget organisms, vesicular-arbuscular mycorrhizal fungi, were observed in sagebrush semidesert in central Utah. Only the highest level of tebuthiuron application showed any significant effects on mycorrhizal fungi compared to the untreated control. The introduced annual Bromus tectorum L. had both a reduced percent mycorrhizal root infection and reduced spore density in its rhizosphere with the highest herbicide level. The herbicide did not significantly affect mycorrhizal root infection of Sitanion hystrix, a short-lived perennial grass, at any level of application. There was no significant effect of any level of tebuthiuron on germination of mycorrhizal spores collected 6 months after herbicide application.Published with the approval of the Director, Utah Agricultural Experiment Station, as Journal Paper No. 3777  相似文献   

13.
Summary The vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus versiforme increased significantly the growth ofAsparagus officinalis under controlled conditions using Turface as the growth medium. The growth responses, including increases in root fresh weight, numbers of shoots, shoot dry weight, and shoot height follow a pattern similar to other mycorrhizal systems. Indigenous VAM fungi appeared to have negative effects on average shoot fresh and dry weight, number of shoots per pot and average shoot height on one year oldA. officinalis seedlings obtained from the field and grown under controlled conditions. These results may be due either to the high levels of soluble phosphate present in the soil or the ineffectiveness of the particular indigenous fungi as mycorrhizal fungi in asparagus. Indigenous mycorrhizal fungi overwinter in asparagus root crown as vesicles and as external and internal hyphae. Soil obtained from the same fields as the one year old crowns was a good source of mycorrhizal inoculum for sterile seedlings.  相似文献   

14.
The ability of ericoid and ectomycorrhizal fungi to utilize 14C-labelled lignin and O14CH3-labelled dehydropolymer of coniferyl alcohol as sole C sources has been assessed in pure culture studies. The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhizal fungi. Amongst the ectomycorrhizal fungi the facultative mycorrhizal fungus Paxillus involutus degraded lignin more readily than those which are normally considered to be obligately mycorrhizal fungi such as Suillus bovinus and Rhizopogon roseolus. The importance of these lignin degrading capabilities is discussed in relation to the predominance of specific mycorrhiza forms along a gradient of increasing organic matter and hence lignin content of soil.  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi are a multifaceted group of mutualistic symbionts that are common to terrestrial ecosystems. The interaction between AM fungi and plant roots is of environmental and agronomic importance. Understanding the molecular changes within the host plant upon AM fungal colonisation is a pre-requisite to a greater understanding of the mechanisms underlying the interaction. Differential mRNA display was conducted on leaf tissue of tomato plants colonised and non-colonised by the AM fungus Glomus mosseae and five putative differentially regulated cDNAs were identified. All cDNAs isolated shared high sequence similarity to known plant genes. Differential screening was initially used to establish whether the cDNAs were differentially expressed. Semi-quantitative RT-PCR was used to establish gene expression patterns for all five clones within leaf and root tissue of mycorrhizal and non-mycorrhizal colonised tomato plants. Differential regulation was observed for all five cDNAs. Down-regulation within the leaf tissue of mycorrhizal plants was observed for 4 out of the 5 cDNAs with an up-regulation observed only for one. Tissue specific regulation was observed for several cDNAs, with down-regulation observed in mycorrhizal leaf tissue and up-regulation observed within mycorrhizal root tissue as compared to non-mycorrhizal tissue.  相似文献   

16.
Epiphytic plants were collected from four oil palm plantations in Peninsular Malaysia and their mycorrhizal status determined. Conspecific plants with a terrestrial habit (16 species) and rhizosphere soils were also examined for mycorrhizal colonization and glomalean fungi, respectively. Twelve species of glomalean fungi were recovered from the four oil palm plantation soils. Of the 29 epiphytic species in 16 families belonging to the bryophytes, pteridophytes and angiosperms, only four species of angiosperms that were facultative epiphytes and a hemiepiphyte growing within 0.4 m of ground level had vesicular-arbuscular mycorrhizal (VAM) fungi. Bioassays of organic debris from oil palm trunks did not produce vesicular-arbuscular mycorrhizas on maize. Six epiphytic species grown in the greenhouse in pots containing oil palm rhizosphere soils rooted and had VAM fungi and thus may be facultative epiphytes. Five other epiphyte species failed to grow in pots and are probably obligate epiphytes. Seven epiphyte species that established themselves in pots failed to form vesicular-arbuscular mycorrhizas.  相似文献   

17.
The identity and ecological role of fungi in the mycorrhizal roots of 25 species of mature terrestrial orchids and in 17 species of field incubated orchid seedlings were examined. Isolates of symbiotic fungi from mature orchid mycorrhizas were basidiomycetes primarily in the generaCeratorhiza, Epulorhiza andMoniliopsis; a few unidentified taxa with clamped hyphae were also recovered. More than one taxon of peloton-forming fungus was often observed in the cleared and stained mycorrhizas. AlthoughCeratorhiza andEpulorhiza strains were isolated from the developing protocorms, pelotons of clamped hyphae were often presents in the cleared protocorms of several orchid species. These basidiomycetes are difficult to isolate and may be symbionts of ectotrophic plants. The higher proportion of endophytes bearing clamp connections in developing seeds than in the mycorrhizas is attributed to differences in the nutritional requirements of the fully mycotrophic protocorms and partially autotrophic plants. Most isolates ofCeratorhiza differed enzymatically fromEpulorhiza in producing polyphenol oxidases. Dual cultures with thirteen orchid isolates and five non-orchid hosts showed that some taxa can form harmless associations with non-orchid hosts. It is suggested that most terrestrial orchid mycorrhizas are relatively non-specific and that the mycobionts can be saprophytes, parasites or mycorrhizal associates of other plants.  相似文献   

18.
Summary A procedure is described for selection and screening of VA mycorrhizal fungi in pot and field trials. The VA mycorrhizal fungi from 20 farm paddocks with unexpectedly high pasture production were compared withGlomus fasciculatus for ability to stimulate plant growth. The fungi from three soils (F4, F11, and F20) which were 84–142% more effective thanG. fasciculatus at stimulating growth in sterilised soils were then tested for ability to stimulate clover growth in unsterilised soils in pots, and in the field. F4, F11 and F20 were more efficient thanG. fasciculatus and the indigenous mycorrhizal fungi in all except one field soil.  相似文献   

19.
带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定   总被引:1,自引:0,他引:1  
为获得带叶兜兰(Paphiopedilum hirsutissimum)种子萌发的共生真菌,采用原地共生萌发技术获得了2株自然萌发的小幼苗,并分离和筛选出了有效的种子萌发共生菌——瘤菌根菌(Epulorhiza sp.)。为验证分离菌株对带叶兜兰种子萌发的有效性,将Phs34号菌株与带叶兜兰种子在灭菌后的原生境基质上进行室内共生萌发试验,结果表明,经过6周的培养,对照组没有观察到种子的萌发;接菌的种子胚明显膨大,突破种皮,形成原球茎,平均萌发率为(58.35±3.41)%。这表明分离得到的瘤菌根菌能促进带叶兜兰的种子萌发。  相似文献   

20.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号