共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the phosphorylation of chromatographically purified histone H1 subfractions from the liver of premetamorphic tadpoles (). Two H1 subfractions were obtained which differed in terms of net incorporation of [32P]phosphate . Analysis of N-bromosuccinimide cleavage products further revealed that the two subfractions also differed in the relative distribution of [32P]phosphate in N- and C-terminal regions of the molecule. Incorporation of [32P]phosphate into both regions of the molecule occurred virtually exclusively in serine residues. 相似文献
2.
Sites of in vivo acetylation in trout testis histone IV 总被引:6,自引:0,他引:6
3.
The in vivo phosphorylation of histones in the livers of Rana catesbeiana tadpoles was followed during the course of thyroxine-induced metamorphosis. Phosphorylation of histones H1 and H2a, and possibly of histone H4 at a low level, was observed in all animals. After correction for specific radioactivity of liver inorganic phosphate pools, an apparent wave of phosphorylation of histones was found to occur between 2 and 8 days of thyroxine treatment, with a peak increase of approximately 2- to 5-fold for histones H2a and H1. The increases in liver histone phosphorylation are approximately coincident with well-documented increases in the levels of various liver enzymes and occur in the absence of any change in the low basal rate of histone or DNA synthesis in this organ. This is apparently the first instance of increased phosphorylation of both H1 and H2a which is not coincident with or precedent to increases in cellular proliferation rates. 相似文献
4.
Specific lysyl residues of trout testis histones H3 and H4 are methylated partially during rainbow trout spermatogenesis. Histones H1, H2A, H2B, and protamine are not methylated. The single site (lysine 20) in histone H4 and the two major sites (lysines 9 and 27) in histone H3 are homologous to those determined for other organisms, but an additional minor site (lysine 4) occurs in histone H3. As described for calf thymus, both histones H3 and H4 contain epsilon-N-mono- and dimethyllysine, while histone H3 contains in addition, epsilon-N-trimethyllysine. The trout-specific histone H6, which accounts for 0.5 to 1.0% of total histone, contains a sequence for residues 3 to 5,-Arg-Lys-Ser-, which is the same as one methylated in histones H3, at lysines 9 and 27. However, histone H6 yields only trace amounts of [3H]methyl incorporation and no detectable methyllysines on amino acid analysis. 相似文献
5.
6.
The primary structure of Histone Acetyltransferase 1 (Hat1) has been conserved throughout evolution; however, despite its ubiquity, its cellular function is not well characterized. To study its in vivo acetylation pattern and function, we utilized shRNAmir against Hat1 expressed in the well-substantiated HeLa (human cervical cancer) cell line. To reduce the interference by enzymes with similar HAT specificity, we used HeLa cells expressing histone acetyltransferase Tip60 with mutated acetyl-CoA binding site that abrogates its enzyme activity (mutant HeLa-tip60). Two shRNAmir were identified that reduced the expression of the cytoplasmic and nuclear forms of Hat1. Cytosolic protein preparations from these two clones showed decreased levels of acetylation of lysine 5 (K5) and K12 on histone H4, with the concomitant loss of the acetylation of histone H2A at K5. This pattern of decreased acetylation of H2AK5 was well defined in preparations of histone protein and insoluble nuclear-protein (INP) fractions as well. Abrogating the Hat1 expression caused a 74 % decrease in colony-forming efficiency of mutant HeLa-tip60 cells, reduced the size of the colonies by 50 %, and decreased the amounts of proteins with molecular weights below 35 kDa in the INP fractions. 相似文献
7.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1514-1515
Comment on: Lau PN, et al. Proc Natl Acad Sci USA 2011; 108:2801-6. 相似文献
8.
A mechanism of mitosis-specific enhancement of histone H3 phosphorylation was analyzed in vitro in terms of nucleosome structure. The incorporation of [32P]phosphate into DNA-bound H3 was approximately 5-7 times higher than in DNA-free H3 using the catalytic subunit of cAMP-dependent protein kinase. The two major N-terminal serine sites, including the mitosis-specific site (Ser10) and Ser28, were extensively phosphorylated in the DNA-bound forms. These phosphorylation patterns were identical to those of nucleosomal H3. In contrast, the H3 in DNA-free octamers was very slightly phosphorylated. The major site of H3 phosphorylation in DNA-free H3 was Thr118 in the C-terminus. Results indicate that DNA-binding is essential for the high level of mitosis-specific H3 phosphorylation, and that the nucleosome structure promotes H3 N-terminal phosphorylation in vitro. It also suggests the possibility that H1 prevents H3 phosphorylation during interphase of the cell cycle. 相似文献
9.
Nonylphenol polyethoxylates (NPEOs) are non-ionic surfactants widely used for industrial and household purposes. Since biodegraded short chain NPEOs were reported to elicit estrogenic activity in organisms, numerous studies have been carried out to assess the endocrine-disrupting potential of NPEOs; however, the genotoxicity of the compounds is not fully known, let alone the relationship between the genotoxic potential and number of ethylene oxide (EO) units of NPEOs. In this study, we examined the genotoxicity of NPEO(n) having various EO units (n=0, 5, 10, 15, 20, 30, 40 and 70) in a human breast adenocarcinoma cell line, MCF-7, based on the phosphorylation of histone H2AX (γ-H2AX), recently regarded as a sensitive marker for DNA damage. We clarified that NPEOs have the ability to form γ-H2AX via activation of ATM or DNA-PK, a general signaling pathway in response to DSBs, and this ability was strongly dependent on the number of EO units, that is, NPEO(0-15) having smaller numbers of EO units more readily generated γ-H2AX. Flow cytometric analysis revealed that the generation of γ-H2AX was independent of cell cycle phases. Although the mechanism by which the NPEOs generated γ-H2AX was not able to be elucidated in the present study, it was clear that the involvement of reactive oxygen species and apoptotic DNA fragmentation were not causal factors. The generation of γ-H2AX means the formation of DSBs, the worst type of DNA damage. The results indicated that attention should be paid to degradated short chain NPEOs and their genotoxicity. 相似文献
10.
We mapped the in vivo phosphorylation sites for the matrix (M) protein of the Orsay and San Juan strains of vesicular stomatitis virus, Indiana serotype, using limited proteolysis and phosphoamino acid analysis. M protein was solubilized from 32P-labeled virions by using detergent and high-salt conditions, then treated with either trypsin or Staphylococcus aureus V8 protease, and analyzed by polyacrylamide gel electrophoresis and autoradiography to determine which fragments contained phosphate residues. The M protein fragment extending from amino acid 20 to the carboxy terminus contained approximately 70% of the control 32P label, while the fragment extending from amino acid 35 to the carboxy terminus had only trace amounts of label. These data indicate that the major phosphorylation site was between amino acids 20 and 34 in the Orsay strain M protein. Phosphoamino acid analysis of M protein by thin-layer electrophoresis showed the presence of phosphothreonine and phosphoserine and that phosphothreonine continued to be released after prolonged vapor-phase acid hydrolysis. These data identify Thr-31 as the primary in vivo phosphate acceptor for M protein of the Orsay strain of vesicular stomatitis virus. The San Juan strain M protein has serine at position 32, which may also be an important phosphate acceptor. In addition, phosphorylation at Ser-2, -3, or -17 occurs to a greater extent in the San Juan strain M protein than in the Orsay strain M protein. The subcellular distribution of phosphorylated M protein was investigated to determine a probable intracellular site(s) of phosphorylation. Phosphorylated M protein was associated primarily with cellular membranes, suggesting phosphorylation by a membrane-associated kinase. Virion M protein was phosphorylated to a greater extent than membrane-bound M protein, indicating that M protein phosphorylation occurs at a late stage in virus assembly. Phosphorylation of wild-type and temperature-sensitive mutant M protein was studied in vivo at the nonpermissive temperature. The data show that phosphorylated M protein was detected only in wild-type virus-infected cells and virions, suggesting that association with nucleocapsids may be required for M protein phosphorylation or that misfolding of mutant M protein at the nonpermissive temperature prevents phosphorylation. 相似文献
11.
Lim JH Catez F Birger Y West KL Prymakowska-Bosak M Postnikov YV Bustin M 《Molecular cell》2004,15(4):573-584
Here we demonstrate that HMGN1, a nuclear protein that binds to nucleosomes and reduces the compaction of the chromatin fiber, modulates histone posttranslational modifications. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of phospho-S10-H3 and enhances the rate of stress-induced phosphorylation of S10-H3. In vitro, HMGN1 reduces the rate of phospho-S10-H3 by hindering the ability of kinases to modify nucleosomal, but not free, H3. During anisomycin treatment, the phosphorylation of HMGN1 precedes that of H3 and leads to a transient weakening of the binding of HMGN1 to chromatin. We propose that the reduced binding of HMGN1 to nucleosomes, or the absence of the protein, improves access of anisomysin-induced kinases to H3. Thus, the levels of posttranslational modifications in chromatin are modulated by nucleosome binding proteins that alter the ability of enzymatic complexes to access and modify their nucleosomal targets. 相似文献
12.
13.
Edmondson DG Davie JK Zhou J Mirnikjoo B Tatchell K Dent SY 《The Journal of biological chemistry》2002,277(33):29496-29502
Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser(10)) facilitates acetylation of lysine 14 (Lys(14)) by Gcn5 in vitro (, ). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser(10) in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser(10) to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys(9)) in vivo. Acetylation of Lys(9) is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser(10) in H3 and the concomitant loss of Lys(9) acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser(10) mutations that are reminiscent of delays in G(2)/M progression caused by combined loss of GCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys(9) and Lys(14), and they highlight the importance of these histone modifications to normal cell functions. 相似文献
14.
15.
16.
Wu CY Kang HY Yang WL Wu J Jeong YS Wang J Chan CH Lee SW Zhang X Lamothe B Campos AD Darnay BG Lin HK 《The Journal of biological chemistry》2011,286(35):30806-30815
DNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci. Mechanistically, we show that monoubiquitination of H2AX induced by RING finger protein 2 (RNF2) is required for the recruitment of active ataxia telangiectasia mutated to DNA damage foci, thus affecting the formation of γ-H2AX. Importantly, a defect in monoubiquitination of H2AX profoundly enhances ionizing radiation sensitivity. Our study therefore suggests that monoubiquitination of H2AX is an important step for DNA damage response and may have important clinical implications for the treatment of cancers. 相似文献
17.
18.
Rose KL Li A Zalenskaya I Zhang Y Unni E Hodgson KC Yu Y Shabanowitz J Meistrich ML Hunt DF Ausió J 《Journal of proteome research》2008,7(9):4070-4078
Previous studies gave differing results as to whether the testis-specific histone H1t was phosphorylated during rodent spermatogenesis. We show here that histones extracted from germ cell populations enriched with spermatids at different stages of development in rat testes reveal an electrophoretic shift in the position of H1t to slower mobilities in elongating spermatids as compared to that from preceding stages. Alkaline phosphatase treatment and radioactive labeling with (32)P demonstrated that the electrophoretic shift is due to phosphorylation. Mass spectrometric analysis of histone H1t purified from sexually mature mice and rat testes confirmed the occurrence of singly, doubly, and triply phosphorylated species, with phosphorylation sites predominantly found at the C-terminal end of the molecule. Furthermore, using collision-activated dissociation (CAD) and electron transfer dissociation (ETD), we have been able to identify the major phosphorylation sites. These include a new, previously unidentified putative H1t-specific cdc2 phosphorylation site in linker histones. The presence of phosphorylation at the C-terminal end of H1t and the timing of its appearance suggest that this post-translational modification is involved in the reduction of H1t binding strength to DNA. It is proposed that this could participate in the opening of the chromatin fiber in preparation for histone displacement by transition proteins in the next phase of spermiogenesis. 相似文献
19.
Kaneko H Igarashi K Kataoka K Miura M 《Biochemical and biophysical research communications》2005,328(4):1101-1106
Heat shock induces a variety of biological events including gene activation, cell cycle arrest, and apoptosis. Heat shock has recently been shown to be potentially useful when combined with radiation in cancer therapy, probably because, in mammalian cells, heat inhibits the repair of double-strand breaks (DSBs) induced by ionizing radiation. It remains unclear, however, whether heat shock by itself induces DSBs. In this communication, we present the first evidence that heat shock induces the phosphorylated form of histone H2AX, which is thought to be generated at the chromatin proximal to DSB sites. These results suggest that heat shock induces DSBs in mammalian cells and may provide direct evidence to explain previous reports on DSB-related events occurring after heat shock treatment. 相似文献
20.
Following treatment of hen erythrocyte nuclei with dimethyl 3,3'-dithiobispropionimidate, dimers between histones H1a, H1b, and H5 were extracted with 5% perchloric acid. They resolved electrophoretically into four sub-bands and these were identified by non-reducing/reducing gel electrophoresis. The H5-H5 homodimer species was purified by gel electrophoresis and was treated sequentially with BrCN and dithiothreitol. The pattern of resulting fragments indicates that cross-links were mainly formed between the COOH-terminal portions and at a significantly lower frequency between the COOH-terminal and the NH2-terminal portions. 相似文献