首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Aims: We established a real‐time PCR assay for the detection and strain identification of Candida species and demonstrated the ability to differentiate between Candida albicans the most common species, and also Candida parapsilosis, Candida glabrata, Candida tropicalis and Candida dubliniensis by LightCycler PCR and melting curve analysis. Methods and Results: The DNA isolation from cultures and serum was established using the QIAmp Tissue Kit. The sensitivity of the assay was ≥ 2 genome equivalents/assay. It was possible to differentiate all investigated Candida species by melting curve analysis, and no cross‐reaction to human DNA or Aspergillus species could be observed. Conclusions: The established real‐time PCR assay is a useful tool for the rapid identification of Candida species and a base technology for more complex PCR assays. Significance and Impact of the Study: We carried out initial steps in validation of a PCR assay for the detection and differentiation of medically relevant Candida species. The PCR was improved by generating PCR standards, additional generation of melting curves for species identification and the possibility to investigate different specimens simultaneously.  相似文献   

2.
PCR has proved useful for rapid diagnosis and typing of Leishmania. Lack of specificity to discriminate between species and/or sensitivity to detect from clinical samples has always been an issue. Previously developed primers either require PCR–RFLP analysis for Leishmania aethiopica discrimination or lack sensitivity to detect L. aethiopica from clinical samples. Here we report the development and validation of L. aethiopica specific PCR primers (V5F/V10R) based on cysteine protease B (cpb), a multicopy and polymorphic gene of Leishmania. V5F/V10R primers differentiate L. aethiopica from Leishmania tropica, Leishmania major, Leishmania donovani and Leishmania infantum by direct PCR. In addition, they are sensitive enough to detect L. aethiopica from biopsy samples. The primers can be very useful for epidemiological studies, species typing and diagnosis of L. aethiopica directly from clinical samples. Implementation of these primers in routine L. aethiopica diagnosis can improve detection rate, save time, money and labor required for culturing Leishmania.  相似文献   

3.
A seminested PCR assay was developed in order to amplify the kinetoplast minicircle of Leishmania species from individual sand flies. The kinetoplast minicircle is an ideal target because it is present in 10,000 copies per cell and its sequence is known for most Leishmania species. The two-step PCR is carried out in a single tube using three primers, which were designed within the conserved area of the minicircle and contain conserved sequence blocks. The assay was able to detect as few as 3 parasites per individual sand fly and to amplify minicircle DNA from at least eight Leishmania species. This technique permits the processing of a large number of samples synchronously, as required for epidemiological studies, in order to study infection rates in sand fly populations and to identify potential insect vectors. Comparison of the sequences obtained from sand flies and mammal hosts will be crucial for developing hypotheses about the transmission cycles of Leishmania spp. in areas of endemicity.  相似文献   

4.
Many rodent species act as reservoir hosts of zoonotic cutaneous leishmaniasis in endemic areas. In the present study a simple and reliable assay based on nested PCR was developed for the detection and identification of Leishmania parasites from rodent skin samples. We designed Leishmania-specific primers that successfully amplified ITS regions of Leishmania major, Leishmania gerbilli and Leishmania turanica using nested PCR. Out of 95 field collected Rhombomys opimus, 21 were positive by microscopic examination and 48 by nested PCR. The percentage of gerbils infected with L. major, L. gerbilli and L. turanica was 3.2%, 1.1% and 27.4%, respectively. In 15.8% of the rodents, we found mixed natural infections by L. major and L. turanica, 1.1% by L. major and L. gerbilli, and 2.1% by the three species. We concluded that this method is simple and reliable for detecting and identifying Leishmania species circulating in rodent populations.  相似文献   

5.
A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania) (L.) parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture) or serological (IFAT) techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18) and control dogs (N = 45) originating from non–endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ) test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8–95.4%) or serology IFAT technique (47.4%, 95% CI: 23.5–71.3%). However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia.  相似文献   

6.
The minicircle molecules present in the kinetoplast DNA (kDNA) network constitute a particularly useful molecular tool because they are a multicopy target and present a variable region that differs among minicircle classes in the same network. Using the polymerase chain reaction (PCR) and a set of primers directed outwardly from the minicircle conserved region, it is possible to prepare molecular probes representing the pool of variable regions from the different minicircle classes in the kDNA. In order to examine the specificity of the minicircle variable region as hybridization probes in Leishmania (Viannia) species, such fragments were amplified from reference strains and from a panel of isolates representing the zymodeme diversity of Leishmania (Viannia) in Colombia. The size of the amplified products was conserved in Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, and Leishmania (Viannia) panamensis (650 bp) and diverged in Leishmania (Viannia) equatorensis and Leishmania (Viannia) colombiensis (850 bp). The amplified products were further hybridized to variable region pools of Leishmania braziliensis, Leishmania panamensis, Leishmania guyanensis, and Leishmania equatorensis reference strains. The results obtained from the hybridization experiments support this approach as a means of defining relationships among strains. Hybridization allowed homologies to be perceived, whereas restriction fragment length analysis of the amplified products yielded strain-specific profiles. Apparently, L. (V.) equatorensis and L. (V.) colombiensis minicircle variable regions have no or only low homology with those of other Leishmania (Viannia) species, showing the divergence of those species within the subgenus.  相似文献   

7.
Sixteen species-specific monoclonal antibodies were produced against membranes of Leishmania donovani. These antibodies only reacted with determinants present on L. donovani. No cross-reactions were found with any other species of Leishmania or with membranes of Trypanosoma cruzi. An extensive analysis of the binding specificities of selected antibodies was carried out by using whole promastigote homogenates as antigen. Monoclonal antibodies D-1, D-2, D-3, and D-4 correctly identified all 44 L. donovani stocks from a cross-panel of 84 New and Old World Leishmania stocks. Antibodies D-1 and D-2 were also useful for species classification by immunofluorescence. No cross-reactions were observed with any other Leishmania species examined. Based on either Western blot and/or radioimmunoprecipitation analyses, five distinct groups of molecules associated with L. donovani-specific antigenic determinants were identified. These molecules range in m.w. from 18 to 84 kilodaltons. The antigenic molecules recognized by antibodies D-2, D-10, and D-13 are also recognized by antibodies present in sera from patients with visceral leishmaniasis (kala-azar). Kala-azar sera obtained from cases in both the Old and New World specifically compete with these monoclonal antibodies for the appropriate antigenic determinants in Western blot analysis. These monoclonal antibodies and/or the purified protein antigens may be useful in the development of a serologic assay for the clinical diagnosis of visceral leishmaniasis caused by L. donovani and in epidemiologic studies of leishmaniasis.  相似文献   

8.
Most of the experimental studies of Leishmania spp. infection require the determination of the parasite load in different tissues. Quantification of parasites by microscopy is not very sensitive and is time consuming, whereas culture microtitrations remain laborious and can be jeopardized by microbial contamination. The aim of this study was to quantify Leishmania infantum parasites by real-time polymerase chain reaction (PCR) using specific DNA TaqMan probes and to compare the efficacy of detection of this technique with a PCR-enzyme-linked immunosorbent assay (ELISA). For this purpose, spleen and liver samples from L. infantum-infected mice were collected during a 3-mo longitudinal study and analyzed by both methods. PCR-ELISA failed to quantify Leishmania spp. DNA in samples with very low or very high numbers of parasites. Real-time PCR was more sensitive than PCR-ELISA, detecting down to a single parasite, and enabled the parasite quantification over a wide, 5-log range. In summary, this study developed a method for absolute quantification of L. infantum parasites in infected organs using real-time TaqMan PCR.  相似文献   

9.
10.
Leishmania donovani is the known causative agent of both cutaneous (CL) and visceral leishmaniasis in Sri Lanka. CL is considered to be under-reported partly due to relatively poor sensitivity and specificity of microscopic diagnosis. We compared robustness of three previously described polymerase chain reaction (PCR) based methods to detectLeishmania DNA in 38 punch biopsy samples from patients presented with suspected lesions in 2010. Both, Leishmaniagenus-specific JW11/JW12 KDNA and LITSR/L5.8S internal transcribed spacer (ITS)1 PCR assays detected 92% (35/38) of the samples whereas a KDNA assay specific forL. donovani (LdF/LdR) detected only 71% (27/38) of samples. All positive samples showed a L. donovani banding pattern upon HaeIII ITS1 PCR-restriction fragment length polymorphism analysis. PCR assay specificity was evaluated in samples containing Mycobacterium tuberculosis, Mycobacterium leprae, and human DNA, and there was no cross-amplification in JW11/JW12 and LITSR/L5.8S PCR assays. The LdF/LdR PCR assay did not amplify M. leprae or human DNA although 500 bp and 700 bp bands were observed in M. tuberculosis samples. In conclusion, it was successfully shown in this study that it is possible to diagnose Sri Lankan CL with high accuracy, to genus and species identification, using Leishmania DNA PCR assays.  相似文献   

11.
Abstract Two oligonucleotide primers Lsmc1 and Lsmv1 derived from the conserved and the variable region of a major class kinetoplast DNA (kDNA) minicircle (pLURkE3) of Leishmania strain UR6 were used for the polymerase chain reaction (PCR) in order to amplify a 461-bp fragment from the kDNAs of different Leishmania species. These primers amplify the specific fragment from the kDNAs of cutaneous species only. The cutaneous species can further be distinguished by randomly amplified polymorphic DNA (RAPD) analysis of the kDNAs of these organisms using arbitrarily chosen oligonucleotides. The arbitrary primers also generate polymorphic DNA fingerprints at the genomic level with different L. donovani isolates. The results indicate that the PCR and arbitrarily primed PCR (AP-PCR) may be extremely useful approaches for identifying and distinguishing Leishmania parasites.  相似文献   

12.
The genetic characterization of pathogenic isolates of Leishmania was attempted by analysis of the molecular properties of kinetoplast DNA (kDNA) minicircles. Unit minicircle size is not conserved during speciation of Leishmania since the minicircles of strains and clones of L t major are smaller (700 bp) than those found in certain strains of L mexicana ssp (820 bp), L donovani (850 bp) or L t tropica (900 bp). Schizodeme analysis of minicircles reveals a high degree of sequence divergence in kDNA of Leishmania with the degree of microheterogeneity varying between species. This sequence divergence allows the discrimination of species, strains, and clones of Leishmania into schizodemes. Southern blot hybridization experiments reveal that at high stringency overall minicircle sequence homology is conserved among clones and strains of one species (L t major) but not between different species. This property of minicircle DNA permits the use of kDNA probes as a species-specific diagnostic test for the identification of unknown Leishmania isolates. The properties of kDNA from an L t tropica strain LRC-L32 (a “recidiva” organism) are so diverged from those of L t major strains as to support the classification [22,23] of L t tropica and L t major as separate species of Leishmania rather than subspecies of L tropica.  相似文献   

13.
In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.  相似文献   

14.
Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology.  相似文献   

15.
A sequence database was created for the Leishmania N-acetylglucosamine-1-phosphate transferase (nagt) gene from 193 independent isolates. PCR products of this single-copy gene were analyzed for restriction fragment length polymorphism based on seven nagt sequences initially available. We subsequently sequenced 77 samples and found 19 new variants (genotypes). Alignment of all 26 nagt sequences is gap free, except for a single codon addition or deletion. Phylogenetic analyses of the sequences allow grouping the isolates into three subgenera, each consisting of recognized species complexes, i.e., subgenus Leishmania (L. amazonensis-L. mexicana, L. donovani-L. infantum, L. tropica, L. major, and L. turanica-L. gerbilli), subgenus Viannia (L. braziliensis, L. panamensis), and one unclassified (L. enriettii) species. This hierarchy of grouping is also supported by sequence analyses of selected samples for additional single-copy genes present on different chromosomes. Intraspecies divergence of nagt varies considerably with different species complexes. Interestingly, species complexes with less subspecies divergence are more widely distributed than those that are more divergent. The relevance of this to Leishmania evolutionary adaptation is discussed. Heterozygosity of subspecies variants contributes to intraspecies diversity, which is prominent in L. tropica but not in L. donovani-L. infantum. This disparity is thought to result from the genetic recombination of the respective species at different times as a rare event during their predominantly clonal evolution. Phylogenetically useful sites of nagt are restricted largely to several extended hydrophilic loops predicted from hypothetical models of Leishmania NAGT as an endoplasmic reticulum transmembrane protein. In silico analyses of nagt from fungi and other protozoa further illustrate the potential value of this and, perhaps, other similar transmembrane molecules for phylogenetic analyses of single-cell eukaryotes.  相似文献   

16.
Infections caused by Trichinella species occur throughout the world in many wild and domestic animals resulting in trichinellosis in men. In Europe, domestic pigs are predominantly infected by three Trichinella species: T. spiralis, T. britovi and T. pseudospiralis. Present methods for detection of Trichinella spp. (compressorium method, artificial digestion) do not always sufficiently recognize Trichinella larvae and these techniques are labor-intensive, time consuming and do not differentiate isolates on the species level since there are no distinguishing morphological features. Additionally, conventional PCRs cannot quantify numbers of larvae in infectious material. In order to better meet these requirements, we developed a real-time PCR assay for the accurate, rapid and specific identification of the three common European species of the genus Trichinella. The assay targets the large subunit of the mitochondrial rRNA (rrnL) and enables sensitive determination and discrimination of larvae in muscle tissue samples. The real-time PCR assay was developed and validated using reference and field strains from T. spiralis, T. britovi and T. pseudospiralis. In the described real-time PCR assay, the melting points of specific amplificates were always discernable via the melting curve from melting points of unspecific amplificates. This is important for the methods workflow because only C(T) values connected with the additional melting curve analysis allow a distinction of the individual species with confidence. The sensitivity of the technique enabled detection down to 0.1 Trichinella larva per gram meat sample. High disruption levels of tissues by mincing generally resulted in higher sensitivities than protocols without mincing. With its short completion time as well as accurate and specific detection of selected species this assay could become a convenient tool for the fast detection of Trichinella larvae in meat.  相似文献   

17.
The grass breeding industry is interested in a fast and cheap method of identifying contamination in seeds of Italian and perennial ryegrass (Lolium perenne L. and L. multiflorum Lam., respectively). This study shows that high-resolution melting curve analysis in combination with an unlabelled probe assay is an effective method of detecting single nucleotide polymorphisms (SNPs) in diverse Italian and perennial ryegrass backgrounds. This method proved efficient in differentiating ryegrass species and reducing the effect of additional DNA sequence polymorphisms close to the target SNP on the melting curve profiles. For the identification of contamination in Italian and perennial ryegrass seed production, high-resolution melting curve analysis shows great potential, as it is a single closed-tube PCR reaction with an easy workflow, providing results in <2 h after DNA extraction.  相似文献   

18.
Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22,322 unique peptides from a homology-based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N-terminally and one C-terminally extended proteins based on the proteomic data search against the six-frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.  相似文献   

19.
A total of 519 wild animals belonging to eleven species were collected during a two year study in a cutaneous leishmaniasis endemic area in Venezuela (La Matica, Lara State). The animals were captured in home-made Tomahawk-like traps baited with maize, bananas or other available local fruits, and parasites were isolated from 27 specimens. Two different species were found naturally infected with flagellates, i.e., cotton rats (Sigmodon hispidus) and black rats (Rattus rattus). Characterization of the parasites using PCR, kDNA restriction pattern and hybridization with species-specific probes revealed the presence of Leishmania (L.) mexicana in three of the black rats and Leishmania (V.) braziliensis in two others. The latter species was also identified in the single positive specimen of S. hispidus. The results suggested both species of animals as possible reservoirs of Leishmania sp.  相似文献   

20.
Visceral leishmaniasis is an anthropozoonosis caused by a protozoan Leishmania infantum (syn. Leishmania chagasi). Here, we report a typical case of canine cutaneous leishmaniasis due to L. infantum infection without any other systemic symptom in one dog in the city of Rio de Janeiro, Brazil. A mongrel female dog was admitted in a veterinary clinic with reports of chronic wounds in the body. Physical examination revealed erosive lesions in the limbs, nasal ulcers, presence of ectoparasites and seborrheic dermatitis. Blood samples and fragments of healthy and injured skin were collected. The complete hemogram revealed aregenerative normocytic normochromic anemia and erythrocyte rouleaux, and biochemical analysis revealed normal renal and hepatic functions. Cytology of the muzzle and skin lesions suggested pyogranulomatous inflammatory process. The histopathology of a skin fragment was performed and revealed suspicion of protozoa accompanied by necrotizing dermatitis. The diagnosis of leishmaniasis was accomplished by positive serology, isolation of Leishmania from the skin lesion, and also by molecular test (PCR targeting the conserved region of Leishmania kDNA). Culture was positive for damaged skin samples. PCR targeting a fragment of Leishmania hsp70 gene was performed employing DNA extracted from damaged skin. RFLP of the amplified hsp70 fragment identified the parasite as L. infantum, instead of Leishmania braziliensis, the main agent of cutaneous leishmaniasis in Rio de Janeiro. Characterization of isolated promastigotes by five different enzymatic systems confirmed the species identification of the etiological agent. Serology was positive by ELISA and rapid test. This case warns to the suspicion of viscerotropic Leishmania in cases of chronic skin lesions and brings the discussion of the mechanisms involved in the parasite tissue tropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号