首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phylogenetic relationships among the Tyrannides were assessed using over 4000 base pairs of nuclear recombination activating 1 (RAG-1) and 2 (RAG-2) DNA sequence data from about 93% of all described genera, which represents the most complete assessment of relationships for this diverse New World radiation to date. With this sampling we propose a significantly expanded interpretation of higher-level relationships within the group. The Tyrannides are shown to be comprised of six major lineages, all of which represent traditional family-level taxa ( sensu Fitzpatrick, 2004a and Snow, 2004a,b ; del Hoyo et al., 2004 ): (i) manakins (Pipridae); (ii) cotingas (Cotingidae); (iii) the sharpbill ( Oxyruncus ) + onychorhynchine flycatchers (Onychorhynchini); (iv) tityrines (Tityridae); (v) rhynchocycline flycatchers (Rhynchocyclidae); and (vi) the tyrant flycatchers (Tyrannidae). In addition, the RAG data recovered isolated lineages with uncertain relationships, including Neopipo , Platyrinchus , Piprites , and Tachuris . The Pipridae are the sister-group to all the other Tyrannides. Within the latter, the clade ((Oxyruncidae + Tityridae) + Cotingidae) is the sister-group of the Tyrannoidea. Within the Tyrannoidea, the Rhynchocyclidae and their allies are sisters to Neopipo  + Tyrannidae. Using our phylogenetic hypothesis, we propose the first comprehensive phylogenetic classification that attempts to achieve isometry between the tree and a classification scheme using subordination and phyletic sequencing. This study thus provides a phylogenetic framework for understanding the evolution of this diverse New World assemblage, and identifies many avenues for further systematic study.
 © The Willi Hennig Society 2009.  相似文献   

2.
The phylogenetic relationships of members of Cotingidae were investigated using >2100 bp of sequence data from two nuclear introns (myoglobin intron 2 and G3PDH intron 11) and one protein-coding mitochondrial gene (cytochrome b). Strong support was found for a monophyletic clade including 23 traditional cotingid genera, corresponding to the Cotingidae sensu [Remsen, J.V. Jr., Jaramillo, A., Nores, M., Pacheco, J.F., Robbins, M.B., Schulenberg, T.S., Stiles, F.G., da Silva, J.M.C., Stotz, D.F., Zimmer, K.J., 2005. Version 2005-11-15. A classification of the bird species of South America. American Ornithologists' Union. ]. Neither Oxyruncus nor any of the genera in Tityrinae sensu [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] are members of Cotingidae. Within Cotingidae a polytomy of four well-supported clades was recovered: (1) the fruiteaters Pipreola and Ampelioides; (2) the Ampelion group, including Phytotoma; (3) Rupicola and Phoenicircus; and (4) the 'core cotingas' consisting of the remainder of the Cotingas (e.g. fruitcrows, Cotinga, Procnias, Lipaugus, and Carpodectes), with Snowornis in a basal position. The separation of Snowornis from Lipaugus [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] was strongly supported, as were the close relationships between Gymnoderus and Conioptilon, and between Tijuca and Lipaugus. However, basal relationships among 'core cotinga' clades were not resolved.  相似文献   

3.
Phylogenetic relationships among New World suboscine birds were studied using nuclear and mitochondrial DNA sequences. New World suboscines were shown to constitute two distinct lineages, one apparently consisting of the single species Sapayoa aenigma, the other made up of the remaining 1000+ species of New World suboscines. With the exception of Sapayoa, monophyly of New World suboscines was strongly corroborated, and monophyly within New World suboscines of a tyrannoid clade and a furnarioid clade was likewise strongly supported. Relationships among families and subfamilies within these clades, however, differed in several respects from current classifications of suboscines. Noteworthy results included: (1) monophyly of the tyrant-flycatchers (traditional family Tyrannidae), but only if the tityrines (see below) are excluded; (2) monophyly of the pipromorphine flycatchers (Pipromorphinae of ) as one of two primary divisions of a monophyletic restricted Tyrannidae; (3) monophyly of the tityrines, consisting of the genus Tityra plus all sampled species of the Schiffornis group (), as sister group to the manakins (traditional family Pipridae); (4) paraphyly of the ovenbirds (traditional family Furnariidae), if woodcreepers (traditional family Dendrocolaptidae) are excluded; and (5) polyphyly of the antbirds (traditional family Formicariidae) and paraphyly of the ground antbirds (Formicariidae sensu stricto). Genus Melanopareia (the crescent-chests), although clearly furnarioid, was found to be distant from other furnarioids and of uncertain affinities within the Furnarii. Likewise, the species Oxyruncus cristatus (the Sharpbill), although clearly tyrannoid, was distantly related to other tyrannoids and of uncertain affinities within the Tyranni. Results of this study provide support for some of the more novel features of the suboscine phylogeny of, but also reveal key differences, especially regarding relationships among suboscine families and subfamilies. The results of this study have potentially important implications for the reconstruction of character evolution in the suboscines, especially because the behavioral evolution of many suboscine groups (e.g., Furnariidae) is of great interest.  相似文献   

4.
Using characters from mitochondrial DNA to construct maximum parsimony and maximum likelihood trees, we performed a phylogenetic analysis on representative species of 14 genera: 12 that belong to the treefrog family Rhacophoridae and two, Amolops and Rana, that are not rhacophorids. Our results support a phylogenetic hypothesis that depicts a monophyletic family Rhacophoridae. In this family, the Malagasy genera Aglyptodactylus, Boophis, Mantella, and Mantidactylus form a well-supported sister clade to all other rhacophorid genera, and Mantella is the sister taxon to Mantidactylus. Within the Asian/African genera, the genus Buergeria forms a well-supported clade of four species. The genera, except for Chirixalus, are generally monophyletic. An exception to this is that Polypedates dennysii clusters with species of Rhacophorus, suggesting that the taxonomy of the rhacophorids should be revised to reflect this relationship. Chirixalus is not monophyletic. Unexpectedly, there is strong support for Chirixalus doriae from Southeast Asia forming a clade with species of the African genus Chiromantis, suggesting that Chiromantis dispersed to Africa from Asia. Also, there is strong support for the sister taxon relationship of Chirixalus eiffingeri and Chirixalus idiootocus apart from other congeners.  相似文献   

5.
We present a mitochondrial gene tree for representative species of all the genera in the subfamily Myobatrachinae, with special emphasis on Crinia and Geocrinia. This group has been the subject of a number of long-standing taxonomic and phylogenetic debates. Our phylogeny is based on data from approximately 780 bp of 12S rRNA and 676 bp of ND2, and resolves a number of these problems. We confirm that the morphologically highly derived monotypic genera Metacrinia, Myobatrachus, and Arenophryne are closely related, and that Pseudophryne forms the sister group to these genera. Uperoleia and the recently described genus Spicospina are also part of this clade. Our data show that Assa and Geocrinia are reciprocally monophyletic and together they form a well-supported clade. Geocrinia is monophyletic and the phylogenetic relationships with the genus are fully resolved with two major species groups identified: G. leai, G. victoriana, and G. laevis; and G. rosea, G. alba, and G. vitellina (we were unable to sample G. lutea). We confirm that Taudactylus forms the sister group to the other myobatrachine genera, but our data are equivocal on the phylogenetic position of Paracrinia. The phylogenetic relationships among Crinia species are well resolved with strong support for a number of distinct monophyletic clades, but more data are required to resolve relationships among these major Crinia clades. Crinia tasmaniensis and Bryobatrachus nimbus form the sister clade to the rest of Crinia. Due to the lack of generic level synapomorphies for a Bryobatrachus that includes C. tasmaniensis, we synonymize Bryobatrachus with Crinia. Crinia georgiana does not form a clade distinct from other Crinia species and so our data do not support recognition of the genus Ranidella for other Crinia species. Crinia subinsignifera, C. pseudinsignifera, and C. insignifera are extremely closely related despite differences in male advertisement call. A preliminary investigation of phylogeographic substructure within C. signifera revealed significant divergence between samples from across the range of this species.  相似文献   

6.
The tyrant-flycatchers (Tyrannidae) are arguably the largest avian family in the Western Hemisphere with approximately 100 genera and 430 species. Although the composition of the family is largely settled, intergeneric relationships are poorly understood. Morphological and behavior-based classifications are in disagreement with DNA-DNA hybridization data, and both have recently been contradicted by DNA-sequence studies. However, previous DNA-sequence sampling has mostly focused on two out of the six traditional tribes. In this study, we have sampled mitochondrial and nuclear sequences of additional tyrannid genera from across the Tyrannidae, with particularly dense coverage of a third tribe (Elaeniini). Our data corroborate previous DNA-sequence studies that demonstrate a basal division of Tyrannidae into a pipromorphine group (recruited from two morphological tribes) and the core Tyrannidae. Furthermore, we identify a new assemblage that includes Platyrinchus and the enigmatic Neopipo, although the position of this lineage within the Tyrannidae remains incertae sedis. Within the core Tyrannidae, we find strong support for a monophyletic elaeniine assemblage, and discuss a number of strongly supported sub-clades and species-level arrangements that display varying levels of agreement with previous classifications. The elaeniine assemblage may be the sister group to all other core Tyrannidae, and it is in virtually complete congruence with a previous classificatory scheme based on syringeal morphology.  相似文献   

7.
8.
Chloroplast trnL/F and nuclear ribosomal ITS and ETS sequence data were used to analyze phylogenetic relationships among members of tribe Mimuleae (Scrophulariaceae) and other closely related families in Lamiales. The results of these analyses led to the following conclusions. (1) The Australian genera Glossostigma and Peplidium and the taxonomically isolated Phryma join four genera of tribe Mimuleae to form a well-supported clade that is distinct from other families in the Lamiales. We refer to that clade as the subfamily Phrymoideae. (2) The genera Mazus and Lancea (tribe Mimuleae) together form a well-supported clade that we recognize as the subfamily Mazoideae. Mazoideae is weakly supported as sister to Phrymoideae. We assign Mazoideae and Phrymoideae to a redefined family Phrymaceae. (3) Mimulus is not monophyletic, because members of at least six other genera have been derived from within it. In light of the molecular evidence, it is clear that species of Phrymaceae (about 190 species) have undergone two geographically distinct radiations; one in western North America (about 130 species) and another in Australia (about 30 species). Phylogenetic interpretations of morphological evolution and biogeographical patterns are discussed.  相似文献   

9.
The Kinglet Calyptura Calyptura cristata is one of the most enigmatic bird species in South America, known only from specimens collected in the 19th century and a few recent observations. Knowledge of its biology is scanty and its systematic position is obscure. Traditionally, Calyptura was placed in the Cotingidae, but associated with genera that are now known to fall outside the Cotingidae. In an attempt to clarify its phylogenetic position, sequence data from four nuclear markers were obtained from a 180‐year‐old museum study skin of Calyptura, and incorporated into a comprehensive dataset of tyrant flycatchers, cotingas, manakins and allies. Our analyses demonstrate that Calyptura is most closely related to Platyrinchus and Neopipo and that these three genera constitute a deep branch in the clade containing the Rhynchocyclidae (tody‐tyrants and flatbills) and Tyrannidae (typical tyrant flycatchers). The Calyptura specimen is one of the oldest avian museum specimens from which a substantial amount of nuclear DNA sequence data have been obtained, and highlights the immense value of museum collections for DNA‐based phylogenetic studies.  相似文献   

10.
The current study represents phylogenetic analyses of Eremurus, Asphodelus and Asphodeline (Xanthorrhoeaceae-Asphodeloideae) using both plastids genome (trnL-F) and the nuclear ribosomal internal transcribed spacer (nrDNA ITS) sequence data. The analyses revealed that each of the investigated genera is monophyletic. Eremurus subgenus Eremurus is monophyletic, whereas the E. subgenus Henningia is paraphyletic. Trachyandra is the closest relative of Eremurus. Bulbinella and Kniphofia are subsequent sisters of Eremurus and Trachyandra. Aloe, Haworthia and Bulbine were nested in a single clade, sister to the last four genera. Asphodeline section Asphodeline appeared to be non-monophyletic, because of the inclusion of A. damascena. All species of Asphodelus analyzed herein, formed a well-supported clade that it is sister to the clade of Asphodeline species.  相似文献   

11.
Phylogenetic relationships among the Neotropical cichlid subfamily Geophaginae were examined using 136 morphological characters and a molecular dataset consisting of six mitochondrial and nuclear genes. Topologies produced by morphological and combined data under parsimony were contrasted, congruence among different partitions was analysed, and potential effects of character incongruence and patterns of geophagine evolution on phylogenetic resolution are discussed. Interaction of morphological and molecular characters in combined analysis produced better resolved and supported topologies than when either was analysed separately. Combined analyses recovered a strongly supported Geophaginae that was closely related to Cichlasomatinae. Within Geophaginae, two sister clades included all geophagine genera. Acarichthyini (Acarichthys+Guianacara) was sister to the ‘B clade’, which contained the ‘Geophagus clade’ (‘Geophagussteindachneri+Geophagus sensu stricto, and both sister to Gymnogeophagus) as sister to the ‘Mikrogeophagus clade’ (Mikrogeophagus+‘Geophagusbrasiliensis), and in turn, the Geophagus and Mikrogeophagus clades were sister to the crenicarine clade (Crenicara+Dicrossus) and Biotodoma. The second geophagine clade included the ‘Satanoperca clade’ (Satanoperca+Apistogramma and Taeniacara) as sister to the ‘Crenicichla clade’ (Crenicichla+Biotoecus). Several lineages were supported by unique morphological synapomorphies: the Geophaginae + Cichlasomatinae (5 synapomorphies), Geophaginae (1), Crenicichla clade (3), crenicarine clade (1), the sister relationship of Apistogramma and Taeniacara (4) and of Geophagus sensu stricto andGeophagussteindachneri (1), and the cichlasomine tribe Heroini (1). Incorporation of Crenicichla in Geophaginae reconciles formerly contradictory hypotheses based on morphological and molecular data, and makes the subfamily the most diverse and ecologically versatile clade of cichlids outside the African great lakes. Results of this study support the hypothesis that morphological differentiation of geophagine lineages occurred rapidly as part of an adaptive radiation.  相似文献   

12.
Phylogenetic relationships among major groups of passeriform birds were studied by analyses of nucleotide sequence data from two nuclear genes, c- myc and RAG-1. The results corroborated both the monophyly of the order Passeriformes, and the major dichotomy into oscine and suboscine passerines previously suggested based on syringeal morphology and DNA-DNA hybridizations. The representatives of the Old World suboscines (families Eurylaimidae, Philepittidae and Pittidae) formed a monophyletic clade. The New World suboscines clustered into two clades. The first contained Conopophaga (Conopophagidae), Furnarius (Furnariidae), Lepidocolaptes (Dendrocolaptidae), Thamnophilus (Formicariidae), and Rhinocrypta (Rhinocryptidae). Previously, the monophyly of this group has been inferred from their possession of a unique, "tracheophone" syrinx, and from DNA-DNA hybridisation data. The second clade of New World suboscines includes Gubernetes and Muscivora (Tyrannidae), Phytotoma (Phytotomidae), Tityra (Cotingidae) and Pipra (Pipridae). This group of families have been considered monophyletic based on morphology (although ambiguously) and DNA-DNA hybridisation. The sister group relationship of Tityra and Phytotoma supports the previously supposed cotingid affinity of Phytotoma . Nuclear DNA data also unambiguously group the lyrebirds Menura with the oscines.
The presented results from the analysis of nuclear DNA agree well with morphology and DNA-DNA hybridisation data. The precise age of the divergences studied herein are unknown but based on interpretations of the fossil record of passerine birds many of them might date back to the early Tertiary. The agreement between data from the nuclear DNA and other sources, along with the fact that neither of the studied genes showed sign of saturation, indicate the great potential of these two nuclear genes to resolve very old divergences in birds.  相似文献   

13.
We investigated mitochondrial and nuclear DNA in the small tyrant-flycatcher genus Zimmerius (Tyrannidae) and show that molecular data are in strong disagreement with morphology-based taxonomy, but in good concordance with vocal characters. Our molecular data identified two independent cases of well-supported polyphyletic species arrangements within this genus that indicate the following taxonomic changes: elevation of Z. acer and Z. albigularis to species level, separation of northern populations of Z. chrysops as a species and inclusion of southern populations of Z. chrysops into Z. viridiflavus. Although polyphyly has rarely been encountered in bird systematics it has previously been shown for two other tyrannid genera and suggests that tyrannid taxonomy may be poorly resolved, presumably as a consequence of the conserved plumage patterns observed in many tyrannid genera. Our study suggests that vocalizations can be a better indicator of taxonomic limits than plumage pattern in tyrannids.  相似文献   

14.
Neotropical primates, traditionally grouped in the infraorder Platyrrhini, comprise 16 extant genera. Cladistic analyses based on morphological characteristics and molecular data resulted in topologic arrangements depicting disparate phylogenetic relationships, indicating that the evolution of gross morphological characteristics and molecular traits is not necessarily congruent. Here we present a phylogenetic arrangement for all neotropical primate genera obtained from DNA sequence analyses of the beta2-microglobulin gene. Parsimony, distance, and maximum likelihood analyses favored two families, Atelidae and Cebidae, each containing 8 genera. Atelids were resolved into atelines and pitheciines. The well-supported ateline clade branched into alouattine (Alouatta) and ateline (Ateles, Lagothrix, Brachyteles) clades. In turn, within the Ateline clade, Lagothrix and Brachyteles were well-supported sister groups. The pitheciines branched into well-supported callicebine (Callicebus) and pitheciine (Pithecia, Cacajao, Chiropotes) clades. In turn, within the pitheciine clade, Cacajao and Chiropotes were well-supported sister groups. The cebids branched into callitrichine (Saguinus, Leontopithecus, Callimico, Callithrix-Cebuella), cebine (Cebus, Saimiri), and aotine (Aotus) clades. While the callitrichine clade and the groupings of species and genera within this clade were all well supported, the cebine clade received only modest support, and the position of Aotus could not be clearly established. Cladistic analyses favored the proposition of 15 rather than 16 extant genera by including Cebuella pygmaea in the genus Callithrix as the sister group of the Callithrix argentata species group. These analyses also favored the sister grouping of Callimico with Callithrix and then of Leontopithecus with the Callithrix-Callimico clade.  相似文献   

15.
Comprehensive taxonomic sampling can vastly improve the accuracy of phylogenetic reconstruction. Here, we present the most inclusive phylogenetic analysis of Arvicolinae (Mammalia, Rodentia) to date, combining all published cytochrome  b gene sequences of greater than 1097 bp and new sequences from two monotypic genera. Overall, the phylogenetic relationships between 69 species of voles and lemmings, representing 18 genera and 10 tribes, were studied. By applying powerful modern approaches to phylogenetic reconstruction, such as maximum likelihood and Bayesian analysis, we provide new information on the early pulse of evolution within the Arvicolinae. While the position of two highly divergent lineages, Phenacomys and Ondatra , could not be resolved, the tribe Lemmini, appeared as the most basal group of voles. The collared lemmings (Dicrostonychini) grouped together with all of the remaining tribes. The two previously unstudied monotypic genera Dinaromys and Prometheomys form a moderately well-supported monophyletic clade, possibly a sister group to Ellobius (Ellobiusini). Furthermore, with one exception, all tribes ( sensu Musser & Carleton, 2005) proved to be monophyletic and can thus be regarded as meaningful evolutionary entities. Only the tribe Arvicolini emerged as paraphyletic in both analyses because of the unresolved phylogenetic position of Arvicola terrestris . Steppe voles of the genus Lagurus were solidly supported as a sister group to the Microtus and allies clade.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 825–835.  相似文献   

16.
Phylogenetic relationships among representative species of the family Rhacophoridae were investigated based on 2904bp of sequences from both mitochondrial (12S rRNA, 16S rRNA, the complete t-RNA for valine), and nuclear (tyrosinase, rhodopsin) genes. Maximum parsimony, maximum likelihood, and Bayesian analyses were employed to reconstruct the phylogenetic trees. This analysis, combined with previous phylogenetic studies, serves as a framework for future work in rhacophorid systematics. The monophyly of Rhacophorus is strongly confirmed except for the species R.hainanus, which is the sister taxon to A.odontotarsus. The non-monophyly of the newly designated genus Aquixalus by Delorme et al. [Delorme, M., Dubois, A., Grosjean, S., Ohler, A., 2005. Une nouvelle classification générique et subgénérique de la tribu des Philautini (Amphibia, Anura, Ranidae, Rhacophorinae). Bull. Mens. Soc. Linn. Lyon 74, 165-171] is further confirmed. Aquixalus (Aquixalus) forms a well-supported monophyletic group within Kurixalus, whereas, Aquixalus (Gracixalus) is more closely related to species of Rhacophorus, Polypedates, and Chiromantis. Philautus as currently understood, does not form a monophyletic group. Philautus (Kirtixalus) is the sister group to the clade comprising Kurixalus and Aquixalus (Aquixalus), and more remotely related to Philautus (Philautus). Chiromantisromeri does not cluster with species of Chiromantis, and forms a basal clade to all rhacophorids save Buergeria. We propose some taxonomic changes that reflect these findings, but further revision should await more detailed studies, which include combined morphological and molecular analyses, with greater species sampling.  相似文献   

17.
Despite several recent studies, the phylogeny of plethodontid salamanders is not yet fully resolved and the phylogenetic positions of several key genera, especially Aneides, Hemidactylium, Hydromantes and Karsenia, are contentious. Here we present a combined dataset of complete mitochondrial genomes and three nuclear loci for 20 species (16 genera) of plethodontids, representing all major clades in the family. The combined dataset without mitochondrial third codon positions provides a fully resolved, statistically well-supported tree. In this topology two major clades are recovered. A northern clade includes Aneides, Desmognathus, Ensatina, Hydromantes, Karsenia, Phaeognathus and Plethodon, with Plethodon being the sister taxon to the rest of the clade. Hydromantes and Karsenia are sister taxa, and Aneides is recovered as the sister taxon to Ensatina. Desmognathus+Phaeognathus form the sister taxon to Aneides+Ensatina. An eastern/southern clade comprises two subclades. One subclade, the spelerpines (Eurycea, Gyrinophilus, Pseudotriton, Stereochilus, Urspelerpes) is the sister taxon to a subclade comprising Hemidactylium, Batrachoseps and the tropical plethodontids (represented by Bolitoglossa, Nototriton and Thorius). In this topology Hemidactylium is well-supported as the sister taxon to Batrachoseps. Only when mitochondrial third codon positions are included using maximum likelihood analysis is Hemidactylium recovered as the sister taxon to Batrachoseps+tropical genera. Hypothesis testing of alternative topologies supports these conclusions. On the basis of these results we propose a conservative taxonomy for Plethodontidae.  相似文献   

18.
Lichen-forming ascomycetes exhibit often complex morphologies of the vegetative thallus that are usually not found in non-lichenized fungi. This includes the thallus organization and appendical structures associated with the main thallus, such as cilia and rhizines. Such morphological characters are widely employed in the taxonomy of parmelioid lichens, especially at generic level. Within parmelioid lichens, several monophyletic groups can be distinguished, the Hypotrachyna clade being one of them, which includes mostly tropical taxa. In this first molecular study focused specifically on the Hypotrachyna clade, we used maximum parsimony and Bayesian analyses of a combined data set of nuclear ITS and mitochondrial SSU rDNA sequences to (1) test the monophyly of genera presently accepted within the clade and (2) evaluate the phylogenetic value of the morphological characters used to circumscribe genera in parmelioid lichens. Out of the 89 mtSSU and 88 nuITS sequences included in the present study, 121 sequences were newly obtained. Our results show that the taxa within the clade fall into two major groups and that the genus Hypotrachyna is polyphyletic. Everniastrum and Parmelinopsis are nested within Hypotrachyna sensu stricto, the latter being also polyphyletic. Bulbothrix is paraphyletic with Parmelinella nested within and is basal to the second major Hypotrachyna clade. Monophylies of Bulbothrix and Hypotrachyna are significantly rejected. The phylogenetic analysis demonstrates that morphological characters currently used to circumscribe genera in parmelioid lichens, such as cortical anatomy, lobe configuration, cilia, and rhizines have been overestimated and have only minor value in identifying monophyletic groups.  相似文献   

19.
Molecular phylogenetic relationships among members of the odonate genus Libellula (Odonata: Anisoptera: Libellulidae) were examined using 735 bp of mitochondrial COI and 416 bp of 16S ribosomal RNA gene sequences. Considerable debate exists over several relationships within Libellula, as well over the status of two putative genera often placed as subgenera within Libellula: Ladona and Plathemis. Parsimony and maximum-likelihood analyses of the separate and combined data sets indicate that Plathemis is basal and monophyletic and that Ladona is the sister clade to the remainder of Libellula sensu stricto (s.s.) (all species within the genus Libellula, excluding Plathemis and Ladona). Moreover, two European taxa, Libellula fulva and L. depressa, were found to occupy a sister group relationship within the Ladona clade. Relationships within Libellula s.s. are less well resolved. However, monophyletic lineages within the genus are largely consistent with morphologically based subgeneric classifications. Although tree topologies from each analysis differed in some details, the differences were in no case statistically significant. The analysis of the combined COI and 16S data yielded trees with overall stronger support than analyses of either gene alone. Several analyses failed to support the monophyly of Libellula sensu lato due to the inclusion of one or more outgroup species. However, statistical comparisons of topologies produced by unconstrained analyses and analyses in which the monophyly of Libellula was constrained indicate that any differences are nonsignificant. Based on morphological data, we therefore reject the paraphyly of Libellula and accept the outgroup status of Orthemis ferruginea and Pachydiplax longipennis.  相似文献   

20.
The Andes are a cradle of orchid evolution, but most phylogenetic studies of Orchidaceae in this biodiversity hotspot have dealt with epiphytic epidendroid lineages. Here we present a study on neotropical, terrestrial, orchidoid taxa of Prescottiinae s.l. (8 genera, ~100 species), which are adapted to some of the highest elevation habitats on earth that support orchids. They are currently included within an expanded concept of Cranichidinae in the tribe Cranichideae, but DNA sequence data show that neither Prescottiinae s.l. nor Cranichidinae s.s. are monophyletic. Prescottiinae s.l. consist of two strongly supported lineages: the Altensteinia and Prescottia clades, which have closer affinities to Spiranthinae than to Cranichidinae. The Prescottia clade comprises two well-supported subclades, one including most sampled species of Prescottia and a second one with Pseudocranichis thysanochila sister to Prescottia tubulosa. As a group, they are sister to Spiranthinae. Sister to this pair is the Altensteinia clade comprised of six genera, whose intergeneric relationships are well resolved. Finally, Cranichidinae s.s. is sister to all three of these clades. Morphological and ecological features distinguishing the major groups are discussed, as are potential synapomorphies to define them. The reconstructed phylogeny indicates that the classification of Cranichideae needs to be reexamined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号