首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the aromatic biosynthetic pathway in microorganisms and plants, catalyzes the aldol-like condensation of phosphoenolpyruvate and D-erythrose-4-phosphate with the formation of 3-deoxy-D-arabino-heptulosonate-7-phosphate. In Escherichia coli, there are three isoforms of DAHPS, each specifically feedback-regulated by one of the three aromatic amino acid end products. The crystal structure of the phenylalanine-regulated DAHPS from E.coli in complex with its inhibitor, L-phenylalanine, phosphoenolpyruvate, and metal cofactor, Mn(2+), has been determined to 2.8A resolution. Phe binds in a cavity formed by residues of two adjacent subunits and is located about 20A from the closest active site. A model for the mechanism of allosteric inhibition has been derived from conformational differences between the Phe-bound and previously determined Phe-free structures. Two interrelated paths of conformational changes transmit the inhibitory signal from the Phe-binding site to the active site of DAHPS. The first path involves transmission within a single subunit due to the movement of adjacent segments of the protein. The second involves alterations in the contacts between subunits. The combination of these two paths changes the conformation of one of the active site loops significantly and shifts the other slightly. This alters the interaction of DAHPS with both of its substrates. Upon binding of Phe, the enzyme loses the ability to bind D-erythrose-4-phosphate and binds phosphoenolpyruvate in a flipped orientation.  相似文献   

2.
Boocock MR  Coggins JR 《FEBS letters》1983,154(1):127-133
The herbicide glyphosate (N-phosphonomethyl glycine) is a potent reversible inhibitor of the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase activity of the purified arom multienzyme complex from Neurospora crassa. Inhibition of the EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate, with K(i) 1.1 microM, and uncompetitive with respect to shikimate-3-phosphate. The kinetic patterns are consistent with a compulsory order sequential mechanism in which either PEP or glyphosate can bind to an enzyme: shikimate-3-phosphate complex.  相似文献   

3.
The phenylalanine-sensitive isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli was inactivated by the sulfhydryl modifying reagents 5,5-dithiobis-(2-nitrobenzoate), bromopyruvate, and N-ethylmaleimide and protected from inactivation by the presence of its metal activator, Mn2+, and substrate, phosphoenolpyruvate. Inactivation by 5,5-dithiobis-(2-nitrobenzoate) was correlated with modification of two of the seven cysteine sulfhydryls of the enzyme monomer. The kinetics of 5,5-dithiobis-(2-nitrobenzoate) modification were altered significantly and distinctively by both substrates (phosphoenolpyruvate and erythrose 4-phosphate), by Mn2+, and by L-phenylalanine, suggesting that ligand binding has significant effects on the conformation of the enzyme. Site-directed mutagenesis was used to create multiple substitutions at the two invariant cysteine residues of the polypeptide, Cys-61 and Cys-328. Analysis of purified mutant enzymes indicated that Cys-61 is essential for catalytic activity and for metal binding. Cys-328 was found to be nonessential for catalytic activity, although mutations at this position had significant negative effects on Vmax, KmMn, and KmPEP.  相似文献   

4.
A method is described for the purification of the tyrosine inhibitable isoenzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate-lyase(pyruvate phosphorylating), EC 4.1.2.15) to homogeneity as judged by polyacrylamide gel electrophoresis.  相似文献   

5.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

6.
The aroH gene of Escherichia coli, which encodes the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase isoenzyme of the common aromatic biosynthetic pathway, was cloned behind the tac promoter in expression plasmid pKK223-3. The enzyme was overexpressed, purified to homogeneity, and characterized. The native enzyme was found to be a dimeric metalloprotein containing 0.3 mol of iron per mol of subunit and variable amounts of zinc. The activity of the native enzyme was stimulated two- to threefold when assayed in the presence of Fe2+ ions. Pretreatment of the enzyme with Fe2+ also resulted in activation, accompanied by an equivalent increase in iron content. Treatment of the enzyme with chelating agents led to inactivation, which was fully reversed by the presence of Fe2+ in the assay mixture. The native enzyme exhibited a unique absorption profile, having a shoulder of absorbance on the aromatic band with a maximum around 350 nm and a broad, weak band with a maximum around 500 nm. Treatment of the enzyme with Fe2+ enhanced the absorbance at 350 nm and eliminated the band at 500 nm. Treatment with reducing agents caused the disappearance of both bands and destabilized the enzyme. Feedback regulation of the activity of the enzyme was specific for tryptophan, with maximum inhibition at about 70%.  相似文献   

7.
Abstract A gene block controlling sucrose-fermenting ability, nisin resistance and nisin production was found to be transmissible by a conjugation-like process. The 'pSN' (sucrose nisin) plasmid was transferred from 8 different nisin-producing donor strains into MG1614, a plasmid-free derivative of Streptococcus lactis 712. In the new host low yields of a plasmid of approx. 30 MDa were isolated but its authenticity as a pSN plasmid has not yet been established. Possibilities for increased nisin yield by genetic manipulation in S. lactis 712 must exist.  相似文献   

8.
The phenylalanine-regulated isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate- synthase (DAHPS) from Escherichia coli, its binary complexes with either substrate, phosphoenolpyruvate (PEP), or feedback inhibitor, Phe, and its ternary complexes with either PEP or Phe plus metal cofactor (either Mn2+, Cd2+, or Pb2+) were crystallized from polyethylglycol (PEG) solutions. All crystals of the DAHPS without Phe belong to space group C2, with cell parameters a = 213.5 Å, b = 54.3 Å, c = 149.0 Å, β = 116.6°. All crystals of the enzyme with Phe also belong to space group C2, but with cell parameters a = 297.1 Å, b = 91.4 Å, c = 256.5 Å, and β = 148.2°.  相似文献   

9.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the aromatic biosynthetic pathway in microorganisms and plants, catalyzes the aldol-like condensation of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) with the formation of DAHP. The native and the selenomethionine-substituted forms of the phenylalanine-regulated isozyme [DAHPS(Phe)] from Escherichia coli were crystallized in complex with PEP and a metal cofactor, Mn(2+), but the crystals displayed disorder in their unit cells, preventing satisfactory refinement. However, the crystal structure of the E24Q mutant form of DAHPS(Phe) in complex with PEP and Mn(2+) has been determined at 1.75 A resolution. Unlike the tetrameric wild-type enzyme, the E24Q enzyme is dimeric in solution, as a result of the mutational perturbation of four intersubunit salt bridges that are critical for tetramer formation. The protein chain conformation and subunit arrangement in the crystals of E24Q and wild-type DAHPS are very similar. However, the interaction of Mn(2+) and PEP in the enzymatically active E24Q mutant complex differs from the Pb(2+)-PEP and Mn(2+)-phosphoglycolate interactions in two enzymatically inactive wild-type complexes whose structures have been determined previously. The geometry of PEP bound in the active site of the E24Q enzyme deviates from planarity due to a 30 degrees twist of the carboxylate plane relative to the enol plane. In addition, seven water molecules are within contact distance of PEP, two of which are close enough to its C2 atom to serve as the nucleophile required in the reaction.  相似文献   

10.
The phenylalanine-inhibitable 3-deoxy-D-arabino-heptulosonate-7-phosphate (dHp1P) synthase from Saccharomyces cerevisiae has been purified to apparent homogeneity by a 1250-fold enrichment of the enzyme activity present in wild-type crude extracts, employing an overproducing strain. The estimated molecular mass of 42 kDa corresponds to the calculated molecular mass of 42.13 kDa deduced from the previously determined primary sequence. Gel filtration indicates that the active enzyme is a monomer. The enzyme is an Fe protein and is inactivated by EDTA in a reaction which is reversible by several bivalent metal ions. The Michaelis constant of the enzyme is 18 microM for phosphoenolpyruvate (P-pyruvate) and 130 microM for erythrose 4-phosphate (Ery4P) and the rate constant was calculated as 10 s-1. Inhibition by phenylalanine is competitive with respect to erythrose 4-phosphate and non-competitive to phosphoenolpyruvate, with a Ki of 10 microM.  相似文献   

11.
12.
The inhibitory effect of tRNA on yeast 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) has been reinvestigated. From earlier studies the inhibition by tRNAPhe appeared to be quite specific. This study shows that tRNAPhe is indeed a potent inhibitor but so is unfractionated tRNA, as well as ribosomal RNA and heparin. Complete digestion to mononucleotides relieves the inhibition. Since the enzyme requires a metal ion (Co2+) we suggest that the RNA and heparin are inhibitory by virtue of their capacity to chelate the Co2+.  相似文献   

13.
14.
The in vitro instability of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Phe)] from Escherichia coli has been found to be due to a metal-catalyzed oxidation mechanism. DAHPS(Phe) is one of three differentially feedback-regulated isoforms of the enzyme which catalyzes the first step of aromatic biosynthesis, the formation of DAHP from phosphoenolpyruvate and D-erythrose-4-phosphate. The activity of the apoenzyme decayed exponentially, with a half-life of about 1 day at room temperature, and the heterotetramer slowly dissociated to the monomeric state. The enzyme was stabilized by the presence of phosphoenolpyruvate or EDTA, indicating that in the absence of substrate, a trace metal(s) was the inactivating agent. Cu2+ and Fe2+, but none of the other divalent metals that activate the enzyme, greatly accelerated the rate of inactivation and subunit dissociation. Both anaerobiosis and the addition of catalase significantly reduced Cu2+-catalyzed inactivation. In the spontaneously inactivated enzyme, there was a net loss of two of the seven thiols per subunit; this value increased with increasing concentrations of added Cu2+. Dithiothreitol completely restored the enzymatic activity and the two lost thiols in the spontaneously inactivated enzyme but was only partially effective in reactivation of the Cu2+-inactivated enzyme. Mutant enzymes with conservative replacements at either of the two active-site cysteines, Cys61 or Cys328, were insensitive to the metal attack. Peptide mapping of the Cu2+-inactivated enzyme revealed a disulfide linkage between these two cysteine residues. All results indicate that DAHPS(Phe) is a metal-catalyzed oxidation system wherein bound substrate protects active-site residues from oxidative attack catalyzed by bound redox metal cofactor. A mechanism of inactivation of DAHPS is proposed that features a metal redox cycle that requires the sequential oxidation of its two active-site cysteines.  相似文献   

15.
In Escherichia coli, aroF, aroG, and aroH encode 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase isozymes that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. In vitro chemical mutagenesis of the cloned aroG gene was used to identify residues and regions of the polypeptide essential for phenylalanine feedback inhibition.  相似文献   

16.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthases are metal-dependent enzymes that catalyse the first committed step in the biosynthesis of aromatic amino acids in microorganisms and plants, the condensation of 2-phophoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P) to DAHP. The DAHP synthases are possible targets for fungicides and represent a model system for feedback regulation in metabolic pathways. To gain further insight into the role of the metal ion and the catalytic mechanism in general, the crystal structures of several complexes between the tyrosine-regulated form of DAHP synthase from Saccharomyces cerevisiae and different metal ions and ligands have been determined. The crystal structures provide evidence that the simultaneous presence of a metal ion and PEP result in an ordering of the protein into a conformation that is prepared for binding the second substrate E4P. The site and binding mode of E4P was derived from the 1.5A resolution crystal structure of DAHP synthase in complex with PEP, Co2+, and the E4P analogue glyceraldehyde 3-phosphate. Our data suggest that the oxygen atom of the reactive carbonyl group of E4P replaces a water molecule coordinated to the metal ion, strongly favouring a reaction mechanism where the initial step is a nucleophilic attack of the double bond of PEP on the metal-activated carbonyl group of E4P. Mutagenesis experiments substituting specific amino acids coordinating PEP, the divalent metal ion or the second substrate E4P, result in stable but inactive Aro4p-derivatives and show the importance of these residues for the catalytic mechanism.  相似文献   

17.
Escherichia coli and some other enteric bacteria possess three regulatory isozymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, each of which is inhibited by one aromatic amino acid. Thel-phenylalanine-sensitive isozyme of DAHP synthase has evolved most recently since it is absent in all other members of the Gram-negative cluster that contains enteric bacteria as a subcluster. A comprehensive survey of enteric genera was carried out to determine whether the newly evolved isozyme is a stable, conserved trait. The results obtained show that all the genera of the contemporaryEnterobacteriaceae family possess the recently evolved phenylalanine-sensitive isozyme in addition to the tyrosine-and tryptophansensitive isozymes of DAHP synthase. However, physiological manipulation was usually necessary to derepress the tryptophan-sensitive DAHP synthase in order to demonstrate its presence.Florida Experiment Station Journal Series No. 9603.  相似文献   

18.
Corynebacterium glutamicum 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase is sensitive to feedback inhibition by tyrosine. One feedback-insensitive mutant was obtained by in vitro chemical mutagenesis and the mutation was identified as a C-->G mutation at nucleotide 560 causing a Ser(187) to Cys(187) substitution. Replacing Ser(187) with cysteine, tyrosine or phenylalanine by site-directed mutagenesis not only reduced the enzymatic activity but also relieved its feedback inhibition by tyrosine, while Ser(187)Ala exhibited a comparable activity to that of wild-type enzyme and sensitized to allosteric regulation. The His(6)-tagged enzymes were expressed in Escherichia coli and purified to homogeneity by immobilized nickel-ion affinity chromatography. Kinetic analysis showed that tyrosine is a competitive inhibitor of phosphoenol pyruvate, one of the precursors for DAHP biosynthesis.  相似文献   

19.
20.
J M Ray  C Yanofsky    R Bauerle 《Journal of bacteriology》1988,170(12):5500-5506
The nucleotide sequence of aroH, the structural gene for the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Trp)], is presented, and the deduced amino acid sequence of AroH is compared with that of the tyrosine-sensitive (AroF) and phenylalanine-sensitive (AroG) DAHPS isoenzymes. The high degree of sequence similarity among the three isoenzymes strongly indicates that they have a common evolutionary origin. In vitro chemical mutagenesis of the cloned aroH gene was used to identify residues and regions of the polypeptide essential for catalytic activity and for tryptophan feedback regulation. Missense mutations leading either to loss of catalytic activity or to feedback resistance were found interspersed throughout the polypeptide, suggesting overlapping catalytic and regulatory sites in DAHPS(Trp). We conclude that the specificity of feedback regulation of the isoenzymes was probably acquired by the duplication and divergent evolution of an ancestral gene, rather than by domain recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号