首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isozymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, denoted DS-Mn and DS-Co, were identified following DEAE-cellulose chromatography of crude extracts prepared from suspension-cultured cells of Nicotiana silvestris. The strikingly different properties of the isozymes allowed the development of assays for the selective detection of either isozyme in samples containing a mixture of the two. The DS-Mn isozyme required the sulfhydryl reductant, dithiothreitol, for activity and was stimulated by manganese. Activation by dithiothreitol was slow relative to catalysis, accounting for a hysteretic progress curve that was observed when reactions were started with inactive enzyme. The DS-Co isozyme was inhibited by dithiothreitol and required a divalent cation for activity. At optimal cation concentrations of 10 millimolar (magnesium), 0.5 millimolar (cobalt), and 0.5 millimolar (manganese), relative activities obtained were 100, 85, and 20, respectively. The substrate saturation curves with respect to erythrose 4-phosphate differed markedly when the two isozymes were compared. As little as 0.5 millimolar erythrose 4-phosphate saturated DS-Mn, whereas a 10-fold higher concentration was needed for saturation of DS-Co. The pH optimum of DS-Mn was 8.0, while that of the DS-Co isozyme was 8.6. Leaves of both N. silvestris and spinach also exhibited the DS-Mn/DS-Co isozyme arrangement, and the subcellular location of DS-Mn was shown to be the chloroplast compartment. By application of the differential assays for DAHP synthase isozymes, various monocotyledonous and dicotyledonous plants yielded data indicating the general presence of the DS-Mn/DS-Co isozyme pair in higher plants.  相似文献   

2.
Incubation of 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-(phosphonomethyl)glycine), with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first order kinetics, with a second order rate constant of 2.2 M-1 min-1 at pH 5.5 and 25 degrees C. The inactivation is prevented by preincubation of the enzyme with a combination of the substrate shikimate 3-phosphate plus glyphosate, but not by shikimate 3-phosphate, phosphoenolpyruvate, or glyphosate alone. Increasing the concentration of glyphosate during preincubation resulted in decreasing the rate of inactivation of the enzyme. Complete inactivation of the enzyme required the modification of 4 carboxyl groups per molecule of the enzyme. However, statistical analysis of the residual activity and the extent of modification showed that among the 4 modifiable carboxyl groups, only 1 is critical for activity. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate by reverse phase chromatography resulted in the isolation of a [14C]glycine ethyl ester-containing peptide that was absent in the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. By amino acid sequencing of this labeled peptide, the modified critical carboxyl group was identified as Glu-418. The above results suggest that Glu-418 is the most accessible reactive carboxyl group under these conditions and is located at or close to the glyphosate binding site.  相似文献   

3.
Two isozymes of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) designated DS-Mn and DS-Co were separated from seedlings of Vigna radiata [L.] Wilczek by DEAE-cellulose column chromatography. DS-Mn was activated 2.6-fold by 0.4 millimolar manganese, had an activity optimum of 7.0, and was substrate inhibited by erythrose-4-phosphate (E4P) concentrations in excess of 0.5 millimolar. In contrast, DS-Co had an activity optimum at pH 8.8, required E4P concentrations of at least 4 millimolar to approach saturation, and exhibited an absolute requirement for divalent cation (cobalt being the best). Regulatory properties of the two isozymes differed dramatically. The activity of DS-Mn was activated by chorismate (noncompetitively against E4P and competitively against phosphoenolpyruvate), and was inhibited by prephenate and l-arogenate (competitively against E4P and noncompetitively against phosphoenolpyruvate in both cases). Under standard assay conditions, l-arogenate inhibited the activity of DS-Mn 50% at a concentration of 155 micromolar and was at least 3 times more potent than prephenate on a molar basis. Weak inhibition of DS-Mn by l-tryptophan was also observed, the magnitude of inhibition increasing with decreasing pH. The pattern of allosteric control found for DS-Mn is consistent with the operation of a control mechanism of sequential feedback inhibition governing overall pathway flux. DS-Co was not subject to allosteric control by any of the molecules affecting DS-Mn. However, DS-Co was inhibited by caffeate (3,4-dihydroxycinnamate), noncompetitively with respect to either substrate. The striking parallels between the isozyme pairs of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase and chorismate mutase are noted—one isozyme in each case being tightly regulated, the other being essentially unregulated.  相似文献   

4.
Enzymological basis for herbicidal action of glyphosate   总被引:8,自引:8,他引:0       下载免费PDF全文
The effects of 1 millimolar glyphosate (N-[phosphonomethyl]glycine) upon the activities of enzymes of aromatic amino acid biosynthesis, partially purified by ion-exchange chromatography from mung bean seedings (Vigna radiata [L.] Wilczek), were examined. Multiple isozyme species of shikimate dehydrogenase, chorismate mutase, and aromatic aminotransferase were separated, and these were all insensitive to inhibition by glyphosate. The activities of prephenate dehydrogenase and arogenate dehydrogenase were also not sensitive to inhibition. Two molecular species of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase were resolved, one stimulated several-fold by Mn2+ (DAHP synthase-Mn), and the other absolutely dependent upon the presence of Co2+ for activity (DAHP synthase-Co). Whereas DAHP synthase-Mn was invulnerable to glyphosate, greater than 95% inhibition of DAHP synthase-Co was found in the presence of glyphosate. Since Co2+ is a Vmax activator with respect to both substrates, glyphosate cannot act simply by Co2+ chelation because inhibition is competitive with respect to erythrose-4-phosphate. The accumulation of shikimate found in glyphosate-treated seedlings is consistent with in vivo inhibition of both 5-enolpyruvylshikimic acid 3-phosphate synthase and one of the two DAHP synthase isozymes. Aromatic amino acids, singly or in combination, only showed a trend towards reversal of growth inhibition in 7-day seedlings of mung bean. The possibilities are raised that glyphosate may act at multiple enzyme targets in a given organism or that different plants may vary in the identity of the prime enzyme target.  相似文献   

5.
Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa, each possessing a 5-enolpyruvylshikimate 3-phosphate synthase that is sensitive to inhibition by glyphosate [N-(phosphonomethyl)glycine], provide a good cross-section of organisms exemplifying the biochemical diversity of the aromatic pathway targeted by this potent antimicrobial compound. The pattern of growth inhibition, the alteration in levels of aromatic-pathway enzymes, and the accumulation of early-pathway metabolites after the addition of glyphosate were distinctive for each organism. Substantial intracellular shikimate-3-phosphate accumulated in response to glyphosate treatment in all three organisms. Both E. coli and P. aeruginosa, but not B. subtilis, accumulated near-millimolar levels of shikimate-3-phosphate in the culture medium. Intracellular backup of common-pathway precursors of shikimate-3-phosphate was substantial in B. subtilis, moderate in P. aeruginosa, and not detectable in E. coli. The full complement of aromatic amino acids prevented growth inhibition and metabolite accumulation in E. coli and P. aeruginosa where amino acid end products directly control early-pathway enzyme activity. In contrast, the initial prevention of growth inhibition in the presence of aromatic amino acids in B. subtilis was succeeded by progressively greater growth inhibition that correlated with rapid metabolite accumulation. In B. subtilis glyphosate can decrease prephenate concentrations sufficiently to uncouple the sequentially acting loops of feedback inhibition that ordinarily link end product excess to feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase by prephenate. The consequential unrestrained entry is an energy-rich substrates into the aromatic pathway, even in the presence of aromatic amino acid end products, is an energy drain that potentially accounts for the inability of end products to fully reverse glyphosate inhibition in B. subtilis. Even in E. coli after glyphosate inhibition and metabolite accumulation were allowed to become fully established, a transient period where end products were capable of only partial reversal of growth inhibition occurred. The distinctive metabolism produced by dissimilation of different carbon sources also profound effects upon glyphosate sensitivity.  相似文献   

6.
The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.  相似文献   

7.
The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSP synthase) has received attention in the past because it is the target of the broad-spectrum herbicide glyphosate. The natural substrate of EPSP synthase is shikimate-3-phosphate. However, this enzyme can also utilize shikimate as substrate. Remarkably, this reaction is insensitive to inhibition by glyphosate. Crystallographic analysis of EPSP synthase from Escherichia coli, in complex with shikimate/glyphosate at 1.5 Angstroms resolution, revealed that binding of shikimate induces changes around the backbone of the active site, which in turn impact the efficient binding of glyphosate. The implications from these findings with respect to the design of novel glyphosate-insensitive EPSP synthase enzymes are discussed.  相似文献   

8.
Cell cultures of Morinda citrifolia L. are capable of accumulating substantial amounts of anthraquinones. Chorismate formed by the shikimate pathway is an important precursor of these secondary metabolites. Isochorismate synthase (EC 5.4.99.6), the enzyme that channels chorismate into the direction of the anthraquinones, is involved in the regulation of anthraquinone biosynthesis. Other enzymes of the shikimate pathway such as deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) and chorismate mutase (EC 5.4.99.5) do not play a regulatory role in the process. The accumulation of anthraquinones is correlated with isochorismate synthase activity under a variety of conditions, which indicates that under most circumstances the concentration of the branchpoint metabolite chorismate is not a rate-limiting factor. Anthraquinone biosynthesis in Morinda is strongly inhibited by 2,4-D, but much less by NAA. Both auxins inhibit the activity of isochorismate synthase proportionally to the concomitant reduction in the amount of anthraquinone accumulated. However, the correlation between enzyme activity and rate of biosynthesis is less clear when the activity of the enzyme is very high. In this case, a limiting concentration of precursor may determine the extent of anthraquinone accumulation. Partial inhibition of chorismate biosynthesis by glyphosate leads to less anthraquinone accumulation, but also to a reduction in ICS activity. The complexity of the interference of glyphosate with anthraquinone biosynthesis is illustrated by the effect of the inhibitor in cell cultures of the related species Rubia tinctorum L. in these cells, glyphosate leads to an increase in anthraquinone content and a concomitant rise in ICS activity. All data indicate that the main point of regulation in anthraquinone biosynthesis is located at the entrance of the specific secondary route.  相似文献   

9.
Reaction of 5-enolpyruvylshikimate-3-phosphate synthase of Escherichia coli with the thiol reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to a modification of only 2 of the 6 cysteines of the enzyme, with a significant loss of its enzymatic activity. Under denaturing conditions, however, all 6 cysteines of 5-enolpyruvylshikimate-3-phosphate synthase react with DTNB, indicating the absence of disulfide bridges in the native protein. In the presence of shikimate 3-phosphate and glyphosate, only 1 of the 2 cysteines reacts with the reagent, with no loss of activity, suggesting that only 1 of these cysteines is at or near the active site of the enzyme. Cyanolysis of the DTNB-inactivated enzyme with KCN leads to elimination of 5-thio-2-nitrobenzoate, with formation of the thiocyano-enzyme. The thiocyano-enzyme is fully active; it exhibits a small increase in its I50 for glyphosate (6-fold) and apparent Km for phosphoenolpyruvate (4-fold) compared to the unmodified enzyme. Its apparent Km for shikimate 3-phosphate is, however, unaltered. These results clearly establish the nonessentiality of the active site-reactive cysteine of E. coli 5-enolpyruvylshikimate-3-phosphate synthase for either catalysis or substrate binding. Perturbations in the kinetic constants for phosphoenolpyruvate and glyphosate suggest that the cysteine thiol is proximal to the binding site for these ligands. By N-[14C]ethylmaleimide labeling, tryptic mapping, and N-terminal sequencing, the 2 reactive cysteines have been identified as Cys408 and Cys288. The cysteine residue protected by glyphosate and shikimate 3-phosphate from its reaction with DTNB was found to be Cys408.  相似文献   

10.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic activity is markedly influenced by monovalent cations such as potassium or ammonium, which is due to an increase in catalytic turnover. However, insensitivity to glyphosate appears to be independent from the presence of cations. Therefore, we propose that the Staphylococcus aureus EPSPS should be classified as a class II EPSPS. This research illustrates a critical mechanism of glyphosate resistance naturally occurring in certain pathogenic bacteria.  相似文献   

11.
The cytosolic isoenzyme of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS-Co: EC 4.1.2.15) in Spinacia oleracea, Solanum tubersosum and many other higher plants was found to use a diversity of substrates. Diose (glycolaldehyde), triose (D-glyceraldehyde, L-glyceraldehyde and DL-glyceraldehyde 3-phosphate), tetrose (D-erythrose, L-erythrose, D-erythrose 4-phosphate, D-threose and L-threose), and pentose (D-ribose 5-phosphate and D-arabinose 5-phosphate) were utilized in combination with phosphoenolpyruvate (PEP) to make the corresponding 2-keto-3-deoxy sugar acids. Glyoxylate was also utilized by DS-Co. Glycoladehyde exhibited the highest reaction velocity when substrates were tested at 3 mM concentrations. Pentoses were poor substrates except when phsophorylated, an effect which is probably due to an increased fraction of the molecules being in the open-chain form. Little stereoselective discrimination exists since comparable velocities were demonstrated with the D and L isomers of glyceraldehyde, erythrose or threose. The enzyme is not a reversible aldolase since pyruvate failed to substitute for PEP. The use of D-erythrose 4-phsophate or glycolaldehyde resulted in Km values of 1.95 mM and 8.60 mM, respectively. However, glycolaldehyde exhibited the largest VmaxKm ratio, suggesting a greater catalytic efficiency for this substrate. Glycolaldehyde is an ideal substrate for inexpensive assays of DS-Co that are absolutely selective in the presence of two other plant enzymes which also utilize erythrose 4-phosphate and PEP. The spinach DS-Co enzymes required divalent metals for activity. The presence of 20 mM Mg2+, 1 mM Co2+ and 1 mM Mn2+ yielded relative activities of 100, 70 and 15, respectively. The pH optimum was 9.5 and temperature optimum for activity was 49°C. The molecular masses of DS-Co from spinach, tobacco and pea were all in the range of 400 kDa. The possible roles of DS-Co in biosynthesis of α-ketoglutarate and aromatic amino acids, in biosynthesis of components of cell wall and phytotoxin, and in acting as a sink for 2-and 3-carbon sugars are discussed.  相似文献   

12.
Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg. et Comes with glyphosate (N-[phosphonomethyl]glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pKa values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COOCH2NH2+CH2PO32−, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (Ki = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (Ki′ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an [enzyme:shikimate-3-P] complex and ultimately forms the dead-end complex of [enzyme:shikimate-3-P:glyphosate].  相似文献   

13.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) is the first enzyme in the shikimate pathway, which leads to the biosynthesis of the aromatic amino acids. These amino acids are utilized as precursors for the synthesis of some secondary metabolites. The relationship between the accumulation of anthocyanin and the activity of DAHP synthase in suspension cultures of Vitis hybrid (Bailey Alicante A) was investigated. The activity of the plastidic isozyme, designated DS-Mn, was very low throughout the culture of cells. However, the activity of the cytosolic isozyme, designated DS-Co, increased transiently and then decreased after transfer of cells to fresh medium, reaching minimum levels during the logarithmic phase. Thereafter, the activity of DS-Co increased rapidly prior to the accumulation of anthocyanin. When phosphate was removed from the culture medium, growth of cells was limited and rapid accumulation of anthocyanin occurred, coincident with the termination of cell division. The activity of phenylalanine ammonia-lyase continued to increase from day 1 and the activity of DS-Co in phosphate-free culture also was 1.6-fold greater than that in the control culture on day 1, while the activity of DS-Mn was unaffected by this treatment. These results suggest a close correlation between the activity of DS-Co and the biosynthesis of anthocyanin.  相似文献   

14.
Abstract The potent inhibition of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase by the broad-spectrum herbicide glyphosate ( N -[phosphonomethyl]glycine) was confirmed for the enzymes extracted from various bacteria, a green alga and higher plants. However, 5 out of 6 species belonging to the genus Pseudomonas were found to have EPSP synthases with a 50- to 100-fold decreased sensitivity to the inhibitor. Correspondingly, growth of these 5 species was not inhibited by 5 mM glyphosate, and the organisms did not excrete shikimate-3-phosphate in the presence of the herbicide.  相似文献   

15.
The broadspectrum herbicide glyphosate (N-[phosphonomethyl]glycine), an inhibitor of the shikimate pathway enzyme 5-enolpyruvyl-shikimic acid-3-phosphate (EPSP)-synthase, inhibits the growth of Aerobacter aerogenes and causes the excretion of shikimic acid-3-phosphate. A strain of A. aerogenes, resistant to inhibition of growth by glyphosate, was isolated and found to have a glyphosate-insensitive EPSP-synthase and to no longer excrete shikimic acid-3-phosphate in the presence of glyphosate. Partial identity of EPSP-synthases from the glyphosate-sensitive and-resistant A. aerogenes strains was demonstrated by immunological procedures.Abbreviation EPSP-synthase 5-enolpyruvylshikimic acid-3-phosphate synthase (EC 2.5.1.19; 3-phosphoshikimate 1-carboxyvinyltransferase)  相似文献   

16.
Import of the precursor to 5-enolpyruvylshikimate-3-phosphate synthase (pEPSPS) into chloroplasts is inhibited by the herbicide glyphosate. Inhibition of import is maximal at glyphosate concentrations of ≥10 μm and occurs only when pEPSPS is present as a ternary complex of enzyme–shikimate-3-phosphate–glyphosate. Glyphosate alone had no effect on the import of pEPSPS since it is not known to interact with the enzyme in the absence of shikimate-3-phosphate. Experiments with wild-type and glyphosate-resistant mutant forms of pEPSPS show that inhibition of import is directly proportional to the binding constants for glyphosate. Inhibition of import is thus a direct consequence of glyphosate binding to the enzyme–shikimate-3-phosphate complex. The potential for non-specific effects of glyphosate on the chloroplast transport mechanism has been discounted by showing that import of another chloroplast-designated protein was unaffected by high concentrations of glyphosate and shikimate-3-phosphate. The mechanism of import inhibition by glyphosate is consistent with a precursor unfolding/refolding model.  相似文献   

17.
Boocock MR  Coggins JR 《FEBS letters》1983,154(1):127-133
The herbicide glyphosate (N-phosphonomethyl glycine) is a potent reversible inhibitor of the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase activity of the purified arom multienzyme complex from Neurospora crassa. Inhibition of the EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate, with K(i) 1.1 microM, and uncompetitive with respect to shikimate-3-phosphate. The kinetic patterns are consistent with a compulsory order sequential mechanism in which either PEP or glyphosate can bind to an enzyme: shikimate-3-phosphate complex.  相似文献   

18.
19.
The binding of substrates and the herbicide N-(phosphonomethyl)glycine (glyphosate) to enolpyruvoylshikimate-3-phosphate (EPSP) synthase was evaluated by stopped-flow and equilibrium fluorescence measurements. Changes in protein fluorescence were observed upon the binding of EPSP and upon the formation of the enzyme-shikimate 3-phosphate-glyphosate ternary complex; no change was seen with either shikimate 3-phosphate (S3P) or glyphosate alone. By fluorescence titrations, the dissociation constants were determined for the formation of the enzyme binary complexes with S3P (Kd,S = 7 +/- 1.2 microM) and EPSP (Kd,EPSP = 1 +/- 0.01 microM). The dissociation constant for S3P was determined by competition with EPSP or by measurements in the presence of a low glyphosate concentration. At saturating concentrations of S3P, glyphosate bound to the enzyme--S3P binary complex with a dissociation constant of 0.16 +/- 0.02 microM. Glyphosate did not bind significantly to free enzyme, so the binding is ordered with S3P binding first: (formula; see text) where S refers to S3P, G refers to glyphosate, and E.S.G. represents the complex with altered fluorescence. The kinetics of binding were measured by stopped-flow fluorescence methods. The rate of glyphosate binding to the enzyme--S3P complex was k2 = (7.8 +/- 0.2) X 10(5) M-1 s-1, from which we calculated the dissociation rate k-2 = 0.12 +/- 0.02 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (first pathway enzyme) is feedback inhibited by L-tyrosine, whereas prephenate dehydratase (enzyme step 9) is feedback inhibited by L-phenylalanine and allosterically activated by L-tyrosine. Mutants lacking feedback inhibition of prephenate dehydratase excreted relatively modest quantities of L-phenylalanine. In contrast, mutants deregulated in allosteric control of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase excreted large quantities of L-phenylalanine (in addition to even greater quantities of L-tyrosine). Clearly, in the latter mutants, the elevated levels of prephenate must overwhelm the inhibition of prephenate dehydratase by L-phenylalanine, an effect assisted by increased intracellular L-tyrosine, an allosteric activator. The results show that early-pathway flow regulated in vivo by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the dominating influence upon metabolite flow-through to L-phenylalanine. L-Tyrosine biosynthesis exemplifies such early-pathway control even more simply, since 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the sole regulatory enzyme subject to end-product control by L-tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号