首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of repair of sublethal damage in mouse lung was studied after fractionated doses of 137Cs gamma-rays. A wide range of doses per fraction (1.7-12 Gy) was given with interfraction intervals ranging from 0.5 to 24 h. The data were analysed by a direct method of analysis using the incomplete repair model. The half-time of repair (T1/2) was 0.76 h for the pneumonitis phase of damage (up to 8 months) and 0.65 h for the later phase of damage up to 12 months. The rate of repair was dependent on fraction size for both phases of lung damage and was faster after large dose fractions than after small fractions. The T1/2 was 0.6 h (95 per cent c.1. 0.53, 0.69) for doses per fraction greater than 5 Gy and 0.83 h (95 per cent c.1 0.76, 0.92) for doses per fraction of 2 Gy. Repair was nearly complete by 6 h, at least for the pneumonitis phase of damage. To the extent that extrapolation of these data to humans may be valid, these results imply that treatments with multiple fractions per day that involve the lung will not be limited by the necessity for interfraction intervals much longer than 6 h.  相似文献   

2.
In experiments with 2120 albino mongrel rats their life span was followed up after the effect of various types of radiation (for instance, gamma-neutron radiation of 0.9 MeV and gamma- and X-rays) at different exposure schedules (that is, whole-body irradiation with doses from LD0/30 to LD100/30 and fractionated at 24 and 72 hour intervals and dose--rates varying from 0.00042 Gy/min to 1.02 Gy/min). The type of radiation, the dose--rate, single and cumulative doses, the number of fractions and the interval between them were estimated with respect to their contribution to life span shortening.  相似文献   

3.
A study was made of the quantitative regularities of the interaction of cytogenetic damages induced, at the G0 stage of human lymphocyte culture, by fractionated gamma-neutron radiation, within a wide range of doses, delivered in the direct of reverse sequence at the intervals between fractions of 1 and 5 h. The results were compared with those obtained in experiments with single and fractionated gamma- or neutron irradiation within the same dose range.  相似文献   

4.
The capacity of a human germ-cell tumour line to repair radiation damage has been investigated by means of a clonogenic assay. Dose-rate dependence studies, split-dose experiments and experiments designed to measure repair of potentially lethal damage have been performed. The cells showed some ability to repair radiation-induced damage in all three types of experiment. An attempt has been made to understand the possible cellular mechanisms of these repair processes by the use of 3-aminobenzamide (3-AB), an agent thought to act by inhibition of ADP-ribosylation. 3-AB added 2 h prior to and removed 18 h after irradiation at a non-toxic dose to unirradiated cells caused a small but consistent increase in cell kill with acute (150 cGy min-1) irradiation, largely involving a reduction in the shoulder region of the survival curve, but had a greater effect in increasing cell kill at a dose rate of 7.6 cGy min-1 and an even greater effect at a dose rate of 1.6 cGy min-1. When 3-Ab was present 2 h prior to the first dose and between two equal doses in a split-dose experiment, inhibition of split-dose recovery was observed. In addition, some inhibition of potentially lethal damage recovery was observed with 3-AB. A possible role for poly(ADP-ribosylation) is thus implicated in the repair of radiation-induced damage of this human tumour cell line during continuous low dose rate or fractionated radiation schedules, although other effects of 3-AB on respiratory metabolism and/or purine synthesis cannot be eliminated as the cause of the observed inhibitory effects.  相似文献   

5.
The method of intestinal "microcolonies" was used to study the radioprotective effect of a gas mixture, containing 8% of O2, on mice subjected to single and fractionated (5 fractions for 30 min) irradiation. The protective effect was indicated by a decreased slope of dose curves of the stem cell injury; the extrapolation number decreased simultaneously. So the values of dose modifying factors (DMF) were higher, when calculated by D0 ratio (where they amounted to 1.76 and 1.39 for single and fractionated exposure respectively), than those determined by equally effective doses (1.19 and 1.26 for single and fractionated effects respectively, which corresponded to LD50/4 when calculated at lg N = 1.9). It is suggested that the radiation response of certain stem cell populations of intestinal epithelium are different: this is attributed to different degrees of hypoxia in cells and to different directions of the hypoxia effects on the injury and the ability of postirradiation repair.  相似文献   

6.
Several peculiarities in manifestations of cerebral form of radiation sickness have been revealed at a fractionated double irradiation with equal and unequal doses per fraction and different intervals between the fractions. A reliable increase in average lifespan of rats irradiated with (100 + 100 Gy) equal doses at 10 and 60 min intervals between two fractions compared to the single radiation exposure to 200 Gy has been obtained. Lifespan of rats irradiated with a total dose greater than 200 Gy in most cases of double exposures with 10 min interval was reliably less than that for animals after a single exposure. The influence of the first dose on the reduction of animal average lifespan increased with fraction dose increasing from 150 to 300 Gy and was most pronounced at the total exposure dose of 400 Gy. Reaction of rats on the repeated irradiation was significantly weakened in comparison with the reaction on the first exposure. At a study of capacitation the interval of 30 min appeared to be more favorable compared to 10 min interval. Importance of a dose value in the first fraction has been demonstrated: the higher this value the worse the capacity of the rats 3 hours after the repeated exposure.  相似文献   

7.
We determined the frequencies of dicentric chromosomes per cell in non-dividing confluent normal human fibroblasts (MRC-5) irradiated with a single 1 Gy dose or a fractionated 1 Gy dose (10X0.1 Gy, 5X0.2 Gy, and 2X0.5 Gy). The interval between fractions was between 1 min to 1440 min. After the completion of X-irradiation, the cells were incubated for 24 hours before re-plating at a low density. Then, demecolcine was administrated at 6 hours, and the first mitotic cells were collected for 42 hours. Our study demonstrated that frequencies of dicentric chromosomes in cells irradiated with a 1 Gy dose at different fractions were significantly reduced if the fraction interval was increased from 1 min to 5 min (p<0.05, χ2-test). Further increasing the fraction interval from 5 up to 1440 min did not significantly affect the frequency of dicentric chromosomes. Since misrejoining of two independent chromosome breaks introduced in close proximity gives rise to dicentric chromosome, our results indicated that such circumstances might be quite infrequent in cells exposed to fractionated X-irradiation with prolonged fraction intervals. Our findings should contribute to improve current estimation of cancer risk from chronic low-dose-rate exposure, or intermittent exposure of low-dose radiation by medical exposure.  相似文献   

8.
The aim of this study is to determine whether the repair process in log-phase Chinese hamster V79 cells exposed to X rays is unsaturated, saturable, or saturated. The kinetics of recovery from damage induced by 2 to 14 Gy of 250 kVp X rays was studied by treating cells with 0.5 M hypertonic saline for 20 min at different postirradiation repair intervals. From the kinetic data, the repair half-time (t1/2), the repair time (time needed to attain maximal survival), and the recovery ratio were calculated. The results show that the t1/2 (1.42 min/Gy) and the repair time (6.04 min/Gy) increase linearly with dose, the logarithm of the recovery ratio increases linear-quadratically with dose, and the D0 increases linearly with repair interval at a rate of 2.4 cGy/min. From these results we suggest a model: the repair of damage (undefined lesions) necessary for cell survival is effected by a repair process (t 1/2 of 1.42 min/Gy) which is saturated at doses as low as 2.4 cGy; repair saturation leads to a dose-dependent accumulation of repairable lesions; and interaction among accumulated repairable lesions results in the induction of irreparable (lethal) lesions. We call this the accumulation-interaction model of cell killing by low-LET radiation.  相似文献   

9.
These experiments were designed to study the kinetics and magnitude of cell repair and repopulation in tissues whose damage results in the tumor bed effect. The right hind thighs of mice were irradiated with single doses or two equal gamma-ray fractions. Interfraction intervals ranging from 30 min to 24 h (to measure the kinetics of repair from sublethal damage) and 6 and 12 weeks (to determine the extent of repopulation) were used. One day after the second radiation dose 5 X 10(5) FSA tumor cells were inoculated into the center of the irradiated field. Radiation dose-response curves were obtained by calculating the time required for tumors to reach 12 mm diameter. No recovery occurred within 6 h of the radiation delivery as measured by this assay. Some recovery, 3.2-4.6 Gy above a single radiation dose, occurred when the interval between two fractions was 24 h. With increasing interfraction intervals of 6 and 12 weeks further dose sparing occurred in the amount of 5.0-6.9 and 7.5-8.3 Gy, respectively. The data suggest that repopulation is the major contributor to the radiation dose-sparing recovery of stromal tissue and that some proliferative response may occur as early as 1 day after the first irradiation.  相似文献   

10.
Total body Irradiation (TBI) is often used for conditioning, prior to bone marrow transplantation. Doses of 8–14 Gy in 1–8 fractions over 1–4 days are administered using low dose rate external beam radiotherapy (EBRT). When necessary, consolidation EBRT using conventional doses, fractionation and dose rate is given. The irradiated volume usually contains critical organs such as spinal cord. The purpose of this study was to assess the biologic effect of TBI on the spinal cord in terms of EQD2 (equivalent dose given in fractions of 2 Gy). EQD2 values were calculated using the linear-quadratic generalized incomplete repair (IR) model that incorporates IR between fractions and low dose rate irradiation corrections and accounts for mono and bi-exponential repair. Three fractionation schemes were studied as function of dose rate: 8 Gy in 1 and 2 fractions and 12 Gy in 8 fractions. For the 12 Gy in 8 fractions scheme, the influence of dose rate on EQD2 was limited because the effect of IR between fractions dominates. For the 8 Gy in 1 fraction scheme, significant sparing of the spinal cord may be achieved for low dose rate (5–20 cGy/min). The extent of effects depends on the parameters used. The IR model provides a useful mathematical framework for examination of the effects of fractionated treatments of varying dose rate. Reliable experimental data are needed for accurate assessment of radiation damage to the spinal cord following fractionated low dose rate TBI.  相似文献   

11.
The authors discuss the possibility of application of multicellular spheroids as a model system in studies based on NSD conception. The death rate of spheroids from cells of Chinese hamster V79-4 was shown to depend upon cumulative dose of gamma- and neutron (0.7 MeV)-radiation (the number of fractions was 1, 5 and 10). With fractionated irradiation, the reoxygenation effect was observed. A good coincidence was obtained between the dependence of the cumulative dose upon the number of fractions for multicellular spheroids and clinical data.  相似文献   

12.
Measurements of renal damage in the mouse were made to determine if there was an equal effect per fraction during a course of repeated 240-kVp X-ray doses. An X-ray dose of 2 Gy was given 2, 8, 14, or 20 times with interfraction intervals of 12 h. Some animals were also irradiated with twenty 2-Gy doses using a 5-h interfraction interval. The underlying effect per fraction (-logeSF of the notional target cell population) was determined from the additional top-up dose of d(4)-Be neutrons needed to produce measurable renal impairment assessed by decreased clearance from the plasma of [51Cr]EDTA and by a reduction in the hematocrit at 25, 29, 33, and 39 weeks after treatment. There was no significant influence of the time of assay on the values of underlying effect measured. A mean value of underlying effect was therefore calculated for the two different assays of each mouse, from the measurements at the four times. This gave approximately 40 estimates (one for each animal assessed) with each assay of the effectiveness of 2-Gy fractions in each of the four fractionation schedules, a total of 321 determinations in the study with 12-h intervals. Regression analysis showed that there was no significant trend in underlying effect per fraction with number of fractions, i.e., the damage per fraction was constant regardless of the number of fractions used. With underlying effect normalized to 1 unit of damage for a single 2-Gy dose, the slope of this plot was -0.0013 per fraction2 +/- 0.0097 (95% CL). The assumption of equal effect per fraction was therefore not invalidated in the kidney of the mouse. With a 5- instead of a 12-h interfraction interval, the 20-fraction schedule was 7% more effective as measured by the two assays analyzed together; this was significant at P = 0.0001. This shows that 5 h is not sufficient time between fractions for full repair to occur in the kidney, and underlines the need for intervals of at least 6 h between the doses in clinical radiotherapy using more than one fraction per day. The data are consistent with an alpha/beta ratio approximately 1.6 Gy, with a repair half-time approximately 1.3 h. However, these experiments were not designed to determine these parameters and their values should be regarded only as rough estimates.  相似文献   

13.
K G Moskalik  A A Akimov 《Tsitologiia》1975,17(12):1406-1414
With single irradiation, the inhibition of tumor cell division and DNA synthesis was more pronounced than with fractionation irradiation. In fractionated schedules, the dose increase per fraction, and the interval prolongation between fractions, with decrease of the number of fractions (within the same time of irradiation), enhanced the effect of radiation. Yield of pahologic mitoses and extent of morphologic injury of cells was less expressed with fractionated irradiation and did not depend on the schedule of fractionation of the total dose.  相似文献   

14.
Cells that have been grown as multicell tumor spheroids exhibit radioresistance compared to the same cells grown in monolayers. Comparison of potentially lethal damage (PLD) repair and its kinetics was made between 9L cells grown as spheroids and confluent monolayers. Survival curves of cells plated immediately after irradiation showed the typical radioresistance associated with spheroid culture compared to plateau-phase monolayers. The dose-modification factor for spheroid cell survival is 1.44. Postirradiation incubations in normal phosphate-buffered saline (PBS), conditioned media, or 0.5 M NaCl in PBS reduced the differences in radiosensitivity between the two culture conditions. Postirradiation treatment in PBS or conditioned medium promoted repair of potentially lethal damage, and 0.5 M NaCl prevented the removal of PLD and allowed the fixation of damage resulting in lower survival. Survival of spheroid and monolayer cells after hypertonic NaCl treatment was identical. NaCl treatment reduced Do more than it did the shoulder (Dq) of the survival curve. PLD repair kinetics measured after postirradiation incubation in PBS followed by hypertonic NaCl treatment was the same for spheroids and for plateau-phase monolayers. The kinetics of PLD repair indicates a biphasic phenomenon. There is an initial fast component with a repair half-time of 7.9 min and a slow component with a repair half-time of 56.6 min. Most of the damage (59%) is repaired slowly. Since the repair capacity and kinetics are the same for spheroids and monolayers, the radioresistance of spheroids cannot be explained on this basis. Evidence indicates that the time to return from a Go (noncycling G1 cells) state to a proliferative state (recruitment) for cells from confluent monolayers and from spheroids after dissociation by protease treatment may be the most important determinant of the degree of PLD repair that occurs. Growth curves and flow cytometry cell cycle analysis indicate that spheroid cells have a lag period for reentry into a proliferative state. Since plating efficiency remains high and unchanging during this period, one cannot account for the delay on the basis of the existence of a large fraction of Go cells which are not potentially clonogenic. The cell cycle progression begins in 6-8 h for monolayer cells and in 14-15 h for spheroids. It is hypothesized that the slower reentry of spheroid cells into a cycling phase allows more time for repair than for the rapidly proliferating monolayer cells.  相似文献   

15.
A human colon adenocarcinoma cell line, WiDr, has been grown in monolayer, as multicellular spheroids, and as xenografted tumors in immune-deprived mice. The growth and radiation responses of the cells under these different growth conditions were compared. The mean doubling time of monolayer cultures was 0.8 day and the initial volume doubling times of spheroids and xenografts averaged 1.2 and 6 days, respectively. The mean total viable cell plating efficiencies were 82, 63, and 7% for cells from monolayers, spheroids, and xenografted tumors, respectively. The radiation responses of single cell suspensions prepared from WiDr tumors (8-10 mm in diameter), exponentially growing monolayer cultures (5 days growth), and spheroids (1200 microns in diameter) irradiated in air at 4 degrees C were similar. Values for D0 were 1.5 Gy and for n between 3 and 5. Nitrogen curves were characterized by a D0 of 5 Gy and n between 3 and 6. Oxygen enhancement ratios were approximately 3.3. Both spheroids and tumors had radioresistant components to the 37 degrees C/air-breathing survival curves with estimated hypoxic fractions of 8 and 12%, respectively. The final portion of the survival curves for irradiations in nitrogen and under normal growth conditions were parallel for both tumors and spheroids. Thus WiDr spheroids appear to model accurately the radiation sensitivity of WiDr tumors.  相似文献   

16.
Samples of human whole blood were exposed in CMF (field induction, 0.3 T) for 15, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300 or 360 min. 15 min following exposure, the samples were gamma-irradiated in a dose of 0.0516 C/kg (137Cs) at a dose rate of 1.95 A/kg. The following chromosome aberrations were scored: deletions dicentrics, rings, and symmetrical exchanges. Exposure of the blood in CMF for 15 to 360 min decreased radiation damage to cells as compared with unexposed irradiated samples. The extention of time from 15 to 180 min increases the effect the smallest amount of chromosome damages being scored at 150-180 min. A 2.8 - fold, 3 - fold and 3.5 - fold decrease was registered in the number of aberrant cells, deletions and dicentrics, respectively. With increasing time of exposure (240 min), the radiomodifying effect started decreasing, and with 300-360 min exposure it was the same as that observed at 15-45 min.  相似文献   

17.
Tumour-related recovery in rat skin was estimated from the dependence of tumour yield on time between split doses of electron radiation. Tumour yield versus dose was established at nine dose points, and at three points the dose was split into two equal fractions spaced 0-25, 3-2 or 6-3 hours apart. After irradiation the rats were observed periodically for at least 64 weeks, and at death the tumours were examined histologically. The dependence of yield on dose for single doses was consistent with a quadratic function up to a peak yield at about 1600 rad. The effect of split doses on tumour yield depended on the position on the dose--response curve. At the lowest split dose, the yield declined with a half-time of about 1-8 hours. At the intermediate split dose, an initial increase was followed by a decline with a half-time of about 3-9 hours. At the highest split dose, the tumour yield increased with time between exposures. Fractionation-induced increases in tumour yield were explained as a sparing effect on cell lethality, whereas tumour-related recovery per se was indicated at the lower two doses.  相似文献   

18.
The method of fractionated irradiation was used to study kinetic aspects of repair of sublethal radiation damages in precursor cells from mouse embryonal liver that form in vivo colonies on 8th and 11th days. It was shown that 11-day CFUs had a lesser ability to repair sublethal radiation damages than 8-day ones at different time-intervals between radiation fractions (from 2 to 6 h). These two CFUs sub-populations differed also in the repair kinetics.  相似文献   

19.
The study of early neurological disturbances (END) in rats after fractionated gamma irradiation with doses of 37.5-225 Gy at dose rate of 30.11 Gy/min has demonstrated that the initial response of animals to pulse ionizing radiation is a function of the electric charge induced by ionizing radiation. A change in the probability of occurrence of each of the END symptoms, with the increased intervals between exposures, is merely an indirect indication of the eliminating mechanisms and is intricately connected with the irritating charge value. The period of dose half-elimination in 16 min. The threshold effective dose rate leading to END is of the order of 2.12 Gy/min. The proposed empiric relationships permit to correlate the probability of END symptom occurrence with the continuous quantitative parameter of fractionated irradiation, that is, with an effective dose as an analogue of the irritating effect.  相似文献   

20.
Chinese hamster V79 cells, when grown as small spheroids in suspension culture, are more resistant to killing by ionizing radiation than when grown as monolayers. We have attempted to determine whether this enhanced survival following irradiation is reflected in DNA damage and repair at the structural level (by measuring alkali-induced DNA unwinding rates from strand breaks) and at the functional level (by measuring resistance to forward mutation at the HGPRT locus). For a given dose of radiation, the unwinding of DNA in high salt/weak alkali was less complete for spheroid DNA than for monolayer DNA, and the rate of repair of radiation damage was faster in spheroid DNA. These differential responses were lost 8 hr after separation of spheroids into single cells, coinciding with loss of radioresistance measured by clonogenicity. In addition, spheroid cells showed fewer numbers of induced mutants per Gray, although, for a given level of survival, the mutation frequency for monolayers and spheroids was identical. These results suggest that conformational changes in DNA resulting from cell growth as spheroids might enhance repair of radiation-induced lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号