首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
蛋白质翻译后修饰研究进展   总被引:9,自引:0,他引:9  
蛋白质是执行细胞功能的基本功能单元,其表达受基因组和表观遗传学的调控。通常,蛋白质在表达以后还需要经过不同程度的修饰才能发挥所需要的功能。这种翻译后修饰过程受到一系列修饰酶和去修饰酶的严格调控,使得在某一瞬间细胞中蛋白质表现出某种稳定或动态的特定功能。最新的研究表明,真核细胞中存在着各种各样的蛋白质修饰过程,其中大约70%目前还无法解释。有理由认为,这种经过了特定修饰的蛋白质,更客观地反映了细胞的各种生理以及病理过程。因此,除了基因组所编码的"裸"蛋白质组的表达以外,更需要对经过翻译后修饰的蛋白质及蛋白质组的调控过程进行深入的研究。该文对常见翻译后修饰以及研究方法进行了综述。  相似文献   

2.
方慧颖  张弓 《微生物学通报》2022,49(7):2767-2777
由于抗生素的大量使用,细菌耐药问题凸显,直接威胁人类生命健康和世界经济发展。过去对于细菌耐药的遗传和分子机制研究较为透彻,而对应的调控机制研究相对较少。翻译调控作为生命体最重要的调控方式之一,在细菌耐药研究领域的重要性尚未被学术界充分重视。本文介绍了影响翻译过程的抗生素的主要作用机制,重点从核糖体的修饰和突变、tRNA总量的动态调控、tRNA氨酰化、tRNA甲基化、核糖体保护蛋白和翻译因子这几个方面概述了基于翻译调控的细菌耐药研究进展,为研究者们提供了一个基于翻译调控角度研究细菌耐药的新视角,同时也为开发靶向细菌翻译调控的新型抗生素提供一些新思路。  相似文献   

3.
黄鹰 《中国科学C辑》2009,39(1):98-108
tRNA是蛋白质翻译机器中的必需成分,它对细胞的生长和增殖及器官的发育起着决定性作用.tRNA生物合成包括tRNA基因的转录、转录后的加工和修饰.对tRNA生物合成的研究还包括tRNA在细胞中的运输、tRNA生物合成的质量监控及其与其他重要细胞途径(如mRNA生物合成、DNA损伤应答和细胞周期)之间的相互作用,以及tRNA生物合成在生长发育和疾病中的作用.本文主要介绍了近年来真核生物细胞质tRNA生物合成研究的一些重要进展.  相似文献   

4.
tRFs(tRNA-derived RNA fragments)是来源于tRNA的小分子非编码RNA,由前体tRNA或成熟tRNA经加工和修饰而成,在生物界中广泛存在。tRFs深度测序结果表明,tRFs可能并不是由tRNA随机裂解产生的,而是通过某个特定机制生成。根据来源不同,tRFs可被分为tRF-1、tRF-2、tRF-3、tRF-5和tiR。tRFs具有类似于miRNA的调控功能,并能参与调控基因转录和翻译,细胞增殖以及细胞应激反应。新近研究表明,乳腺癌细胞中某些特异性的tRFs(如tRFGlyTCC和tRFAspGTC),可通过与Y-box结合蛋白1(Y box binding protein 1, YB-1)结合进而抑制癌细胞的生长和转移。另有研究表明,tRFs还可通过细胞色素c介导的信号转导途径来发挥其抑制癌细胞凋亡的功能。由此可见,tRFs在调控癌症发生发展过程中也具有重要调控作用,然而其机制仍不清楚。本文综述了tRFs结构和分布、生物学功能及其作用机制的研究现状,旨在为tRFs相关研究提供参考。  相似文献   

5.
<正>甲基转移酶对tRNA进行的非必需修饰在进化上是保守的。已报道这种修饰可以防止快速tRNA降解(RTD)从而稳定成熟的tRNA分子。在酵母细胞中,RNA甲基转移酶Trm4和Trm8分别对tRNA进行m5C和m7G修饰。当酵母细胞处于热应激或者5-氟尿嘧啶处理情况下,Trm4和Trm8协同作用稳定tRNA。若应激条件下Trm4和Trm8功能缺陷,tRNA监控系统则  相似文献   

6.
蛋白质赖氨酸乙酰化是植物中普遍存在的重要蛋白质翻译后修饰过程。过去的研究主要集中在染色体组蛋白的乙酰化修饰及其调控机制。目前,随着定量乙酰化蛋白质组学技术的发展,大量非组蛋白赖氨酸乙酰化修饰被发现,其在植物中存在的普遍性及其生理功能的重要性也随之凸显。非组蛋白赖氨酸乙酰化修饰在植物不同组织、器官和细胞器中大量存在,广泛参与植物生长发育的各种代谢过程的调控,并在植物应答和适应逆境胁迫中发挥作用。综述了近年来植物非组蛋白赖氨酸乙酰化修饰的蛋白质组学研究进展,阐明乙酰化修饰在植物不同组织和亚细胞中的分布特征以及在植物生长发育和逆境胁迫响应中的作用,并阐述乙酰化修饰与其他蛋白质翻译后修饰的交互作用,最后对未来的研究进行展望和讨论。  相似文献   

7.
转移核糖核酸(tRNA)是蛋白质合成的关键接头分子,特异性识别信使RNA(mRNA)的密码子信息,将其接载的氨基酸基团掺入到新生多肽链中。最新研究表明,在很多物种中,在某些特定情况下,tRNA或其前体被特异性剪切产生tRNA来源的小片段RNA(tRNA-derived fragment,tRF)。这类tRF是一类新的基因表达调控因子,其发挥作用的机制多样,如某些tRF以microRNA方式抑制mRNA翻译;某些tRF作为逆转录病毒RNA基因组的逆转录引物;而某些tRF参与了前体rRNA剪切复合物的组装。此外,细胞受胁迫产生的带有多聚鸟苷酸模块的tRF则会竞争性抑制延伸因子elF4G与mRNA的结合,从而抑制蛋白质翻译。随着研究的继续深入,对tRF的发生发展、作用机制以及在疾病中的潜在作用将会进一步丰富。拟从tRF作为新的基因表达调控分子的角度,简要介绍tRF发挥作用的分子机制。  相似文献   

8.
旺盛的细胞核、质间的物质运输(nuclear-cytoplasmic transport)是真核细胞代谢的基础.核质运输不仅将蛋白质运到目的地,还能通过在特定时间、地点结合靶分子,改变其在胞内的局部浓度,调控诸如有丝分裂等重要细胞活动.tRNA是细胞中最重要的大分子之一,合成于细胞核,在细胞质中参加蛋白质翻译.一直以来,学术界认为tRNA只是蛋白质合成的参与者,tRNA核质运输是tRNA跨越核膜进入细胞质是单向主动运输过程.然而,最近的研究成果在颠覆传统观念,tRNA不但能被转运出核,还能被逆向转运入核.2008年,新概念“tRNA核质动态分布”(tRNA nuclear-cytoplasmic dynamics)被提出,取代tRNA核质运输,描述tRNA在细胞核、质间的流动.在酿酒酵母中tRNA核质动态分布可以调控蛋白质翻译,锁定细胞周期.此领域内的最新研究正在改变着教科书中有关tRNA的传统论断.  相似文献   

9.
tRNA-derived small RNAs(tsRNA)是近年来发现的、存在于多种生物体内的一类非编码小RNA,来源于成熟tRNA或tRNA前体,其表达和修饰具有组织和细胞特异性. tsRNA参与应激反应、蛋白质翻译调控、核糖体生物合成、肿瘤发生、细胞增殖与凋亡、表观遗传信息的跨代传递等多种生理和病理过程. 本文主要对tsRNA的生成及分类、已知的生物学功能及作用机理、tsRNA 及其修饰在疾病中的作用等进行了综述.  相似文献   

10.
tRNA作为生命中心法则中翻译过程的重要参与分子,其种类、丰度都会对蛋白质的正常合成产生巨大影响。近年来通过对微生物tRNA的结构功能以及合成修饰过程的解析获得诸多启发,开展密码子扩展的研究,实现将非天然氨基酸引入特定位置从而获得新功能蛋白。同时,通过化学合成微生物基因组开展的密码子重编码工作将释放更多的密码子与tRNA用于更加广泛的密码子扩展研究。对微生物tRNA与密码子系统在合成生物学中的最新应用研究进展进行了综述,并讨论其未来的发展趋势。  相似文献   

11.
12.
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.  相似文献   

13.
14.
Hanjiang Fu  Qin Liu 《FEBS letters》2009,583(2):437-44
tRNAs play a central role in protein translation, acting as the carrier of amino acids. By cloning microRNAs, we unexpectedly obtained some tRNA fragments generated by tRNA cleavage in the anticodon loop. These tRNA fragments are present in many cell lines and different mouse tissues. In addition, various stress conditions can induce this tRNA cleavage event in mammalian cells. More importantly, angiogenin (ANG), a member of RNase A superfamily, appears to be the nuclease which cleaves tRNAs into tRNA halves in vitro and in vivo. These results imply that angiogenin plays an important physiological role in cell stress response, except for the known function of inducing angiogenesis.  相似文献   

15.
Ribonucleotide modifications perform a wide variety of roles in synthesis, turnover and functionality of tRNA molecules. The presence of particular chemical moieties can refine the internal interaction network within a tRNA molecule, influence its thermodynamic stability, contribute novel chemical properties and affect its decoding behavior during mRNA translation. As the lack of specific modifications in the anticodon stem and loop causes disrupted proteome homeostasis, diminished response to stress conditions, and the onset of human diseases, the underlying modification cascades have recently gained particular scientific and clinical interest. Nowadays, a complicated but conclusive image of the interconnectivity between different enzymatic modification cascades and their resulting tRNA modifications emerges. Here we summarize the current knowledge in the field, focusing on the known instances of cross talk among the enzymatic tRNA modification pathways and the consequences on the dynamic regulation of the tRNA modificome by various factors. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.  相似文献   

16.
17.
18.
19.
Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGluUUC, tGlnUUG, and tLysUUU in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.  相似文献   

20.
The role of 2'-ribosylated adenosine 64 in tRNA(iMet) from yeast in initiation/elongation discrimination was investigated. As measured by in vitro translation in rabbit reticulocyte lysate, the specific removal of the 2'-ribosylphosphate at adenosine 64 via periodate oxidation allows tRNA(iMet) to read internal AUG codons of the globine messenger RNA. Yeast Met-tRNA(iMet) lacking the modification of nucleoside 64 forms ternary complexes with GTP and elongation factor Tu from Escherichia coli. The lack of modification at position 64 does not prevent tRNA(iMet) from participating in the initiation process of in vitro protein synthesis. Wheat germ tRNA(iMet) has a 2'-ribosylated guanosine at position 64. Removal of this modification from the wheat germ tRNA(iMet) enables it to read internal AUG codons of globine and tobacco mosaic virus messenger RNA in reticulocyte and wheat germ translation systems, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号