首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 113 毫秒
1.
微管蛋白(tubulin)在细胞的结构和功能中发挥着重要作用, α微管蛋白和 β微管蛋白是组成微管的主要因子,γ微管蛋白促使α和β微管蛋白二聚体组装为微管结构. 然而, 4种新的微管蛋白δ-,ε-,ζ-, 和η- tubulin在细胞中的功能并不完全清楚. 本研究从嗜热四膜虫大核基因组数据库中鉴定了一种新的编码δ微管蛋白基因(Tetrahymena delta tubulin 1, TDT1, TTHERM_00335970, http://www. ciliate. org), TDT1基因转录产生1 326 bp和 1 363 bp两种不同的转录本, 1 326 bp的转录本编码441个氨基酸的多肽; 而1 363 bp的转录本含有37 bp未剪切的内含子序列, 从而导致开发读框发生移码突变现象. 实时荧光定量PCR结果表明, TDT1基因在四膜虫细胞营养生长和有性生殖过程中都有表达, 且在有性生殖过程中的表达显著上调. 免疫荧光定位表明, TDT1蛋白不仅定位于四膜虫基体和有性生殖期conjugation junction结构, 而且在四膜虫的大核和小核中也有定位. TDT1基因敲除发现,该基因不能通过表型分配完全被巴龙霉素抗性基因替代, 结果表明, TDT1蛋白在四膜虫细胞中可能具有多种不同的功能, 它的正常表达对四膜虫细胞的生存是必需的.  相似文献   

2.
真核细胞中染色体浓缩调节因子(regulator of chromosome condensation 1, RCC1)是 RanGTPase 唯一的鸟嘌呤核苷酸交换因子. 染色质结合的RCC1和RanGTPase相互作用,催化细胞核内RanGDP向RanGTP的转化,进而调控了核质间的定向运送、有丝分裂期纺锤体的组装以及核膜的形成. 本实验从原生生物嗜热四膜虫大核基因组中鉴定了1个新的RCC1(TTHERM_00530380)基因. 该基因全长2 541 bp,包含2个内含子序列,开放阅读框为2 181 bp,编码726个氨基酸. 实时荧光定量PCR表明,RCC1在四膜虫营养生长、饥饿以及有性生殖时期都有表达,且在有性生殖转录水平达到最高. 免疫荧光定位分析表明, HA RCC1在营养生长和饥饿时期,定位于大核和小核中|在有性生殖时期,定位于亲本大核、减数分裂的小核、新生成的大核和凋亡的大核中. 过表达RCC1导致大核的无丝分裂异常, 细胞增殖变慢,最终产生无大核的后代细胞. 敲减RCC1导致了多小核的产生. 结果表明,RCC1参与调控了四膜虫细胞核的分裂, RCC1的正常表达对核分裂以及细胞增殖起到重要的调控作用.  相似文献   

3.
组蛋白H3/H4的分子伴侣Asf1(anti-silencing factor 1),参与依赖DNA复制及不依赖DNA复制的核小体装配,同时参与转录调控、基因沉默以及DNA损伤修复等过程. 在不同生物中,Asf1具有功能的保守性和多样性.嗜热四膜虫ASF1(TTHERM_00442300)基因编码的蛋白质含有保守的N端结构域和酸性的C端结构域.N端结构域同源序列进化树分析表明,Asf1进化与物种进化一致.实时荧光定量PCR表明,ASF1在四膜虫营养生长、饥饿及有性生殖时期均有表达,且在有性生殖4~6 h转录水平达到最高.免疫荧光定位分析表明,HA-Asf1在营养生长时期以及有性生长时期定位于功能大核和小核中,而在凋亡的大核中信号消失.过表达ASF1导致大核及小核变大,抑制细胞增殖.敲减ASF1后会导致大核形态异常,小核缺失.结果表明,ASF1表达对细胞核的形态和结构维持发挥重要的调控作用.  相似文献   

4.
将人胱硫醚β-合酶(CBS)基因克隆至质粒pGEX-4T-1中,获得的重组质粒pGEX-4T-1-CBS转入大肠杆菌E.coli Rosetta (DE3)菌株,构建了高效表达CBS的重组菌E.coli Rosetta (pGEX4T-1-CBS)。重组菌在0.1mmol/L的IPTG于30℃诱导16h,可溶性CBS表达量达到28mg/L培养基。将重组菌破碎后上清液经GSTrap Fast Flow亲和层析一步纯化得到CBS融合蛋白,在凝血酶柱上切割缓冲液中加入3%甘油和0.1%CHAPS可以有效抑制酶切后CBS聚沉,酶活性回收率为54.8%,蛋白质产率为15.2mg/L培养基,纯度达到95%,单位酶活为143U/mg,终浓度为1mmol/L的S-腺苷甲硫氨酸(AdoMet)可使CBS单位酶活提高5.1倍,达到735U/mg。同时构建了表达CBS1-413(删除了CBS羧基端调控域138个氨基酸残基)的重组菌E.coli Rosetta (pETDuet-1-CBS1-413),经过一步HisTrap Fast Flow亲和层析,酶活性回收率为74.3%,蛋白质产率为12.8mg/L培养基,纯度达到95%,单位酶活为965U/mg; 还表达和纯化了胱硫醚β-裂解酶(CBL),并在此基础上建立了一种新的CBL偶联的CBS酶活性测定方法。  相似文献   

5.
真核细胞中染色体浓缩调节因子(regulator of chromosome condensation 1,RCC1)是RanGTPase唯一的鸟嘌呤核苷酸交换因子.染色质结合的RCC1和RanGTPase相互作用,催化细胞核内RanGDP向RanGTP的转化,进而调控了核质间的定向运送、有丝分裂期纺锤体的组装以及核膜的形成.本实验从原生生物嗜热四膜虫大核基因组中鉴定了1个新的RCC1(TTHERM_00530380)基因.该基因全长2 541 bp,包含2个内含子序列,开放阅读框为2 181 bp,编码726个氨基酸.实时荧光定量PCR表明,RCC1在四膜虫营养生长、饥饿以及有性生殖时期都有表达,且在有性生殖转录水平达到最高.免疫荧光定位分析表明,HA-RCC1在营养生长和饥饿时期,定位于大核和小核中;在有性生殖时期,定位于亲本大核、减数分裂的小核、新生成的大核和凋亡的大核中.过表达RCC1导致大核的无丝分裂异常,细胞增殖变慢,最终产生无大核的后代细胞.敲减RCC1导致了多小核的产生.结果表明,RCC1参与调控了四膜虫细胞核的分裂,RCC1的正常表达对核分裂以及细胞增殖起到重要的调控作用.  相似文献   

6.
可变剪接是产生蛋白质组多样性和调节基因表达的重要机制,相关研究在高等真核生物中开展较多,而在单细胞真核生物中则较少,尤其是单细胞原生动物纤毛虫中,仅有少量报道。本文基于单细胞模式原生动物嗜热四膜虫种大量转录组数据,对其可变剪接基因进行了鉴定及分析。在嗜热四膜虫中共鉴定到2 894个可变剪接位点,涉及到2 698个可变剪接基因,可分为四类。考虑到转录本拼接的准确性,选择了其中464个与基因组预测模型完全一致的可变剪接基因进行深入分析,其中生长(growth)时期、饥饿(starvation)时期、接合生殖(conjugation)时期特异性的可变剪接基因分别为49个、79个和135个。对可变剪接基因的功能进行分析表明其涉及的功能广泛且显著富集于蛋白激酶过程,提示可变剪接基因在嗜热四膜虫蛋白磷酸化和信号传导中具有重要作用。  相似文献   

7.
有性生殖过程特异表达的Tcd1在四膜虫大核基因组重排和修复中起到重要调节作用, Tcd1含有进化中保守的chromodomain(CD)结构域以及chromo shadow domain (CSD)结构域, 然而不同结构域的具体功能并不清楚。本研究首先鉴定了TCD1基因仅含有1个CD结构域的选择性剪切本TCD1β,免疫荧光定位表明,Tcd1β定位在胞质中。定点突变Tcd1中CD1内159位色氨酸为丙氨酸, Tcd1W159A点状定位在亲本大核,然后转移到新发育的大核上围绕核膜致密分布,发育的晚期逐步消失。进一步突变CD2中437位的色氨酸为丙氨酸后,Tcd1W159AW437A在早期亲本大核形成异常的环状分布, 而在新发育大核中形成点状分布。截短CSD结构域C端35个氨基酸后, Tcd1Δ35在亲本大核和新大核上的定位不受影响。 然而,截短CSD结构域C端的53个氨基酸后, Tcd1Δ53定位在细胞质中, 无核内定位。结果表明, Tcd1中的CD1和CD2结构域决定了Tcd1蛋白在核内的分布, CSD结构域决定了Tcd1入核转运, Tcd1的3个功能结构域共同决定了Tcd1在四膜虫中的功能定位。  相似文献   

8.
四膜虫异染色质蛋白Tcd1在有性生殖时期特异表达,在大核基因组重排以及修复过程中发挥作用。磷酸化蛋白质组学分析表明,Tcd1存在3个磷酸化位点:S301,S303和S535。然而,Tcd1磷酸化修饰与其功能的关系并不清楚。本研究对TCD1基因的3个磷酸化位点进行了模拟磷酸化和模拟去磷酸化定点突变,获得模拟磷酸化突变基因TCD1S301D (TCD1S1D)、TCD1S301DS303D (TCD1S2D)与TCD1S301DS303DS535D (TCD1S3D) 和模拟去磷酸化的突变基因TCD1S301A (TCD1S1A)、TCD1S301AS303A (TCD1S2A)与TCD1S301AS303AS535A (TCD1S3A)。分别构建了不同突变体的过表达载体,转化四膜虫细胞并筛选获得不同突变体细胞株。Western印迹分析表明,Tcd1S1D、Tcd1S2D、Tcd1S3D与Tcd1S1A、Tcd1S2A和Tcd1S3A在四膜虫有性生殖期表达。免疫荧光定位分析发现,Tcd1S1D点状定位于细胞质中,Tcd1S2D在有性生殖初期点状定位于细胞质中,在新大核上形成均匀的定位,Tcd1S3D无法定位于亲本大核上,只是均匀定位于新大核上。Tcd1S2A和Tcd1S3A在新大核形成异常的块状定位,并且与异染色质蛋白Pdd1不能共定位。结果表明,Tcd1不同位点的磷酸化和去磷酸化修饰的动态变化决定了其在四膜虫细胞中的定位模式。  相似文献   

9.
Ran是细胞内的一种具有GTP酶活性的功能蛋白,可以调节染色体稳定性、细胞核组建以及核质运输等多种细胞进程.Ran结合蛋白1(Ran-binding protein 1, Rbp1p )是Ran的必要调控因子,促进Ran-GTP水解为Ran-GDP.本研究从嗜热四膜虫大核基因组中鉴定出1个保守的Ran结合蛋白基因RBP1(TTHERM_00158040, http://www.ciliate.org).实时荧光定量PCR表明,RBP1在四膜虫营养生长和有性生殖过程中都有表达,且在有性生殖过程中表达水平提高.免疫荧光定位表明,在营养 生长期Rbp1p定位于细胞质中.过表达RBP1或敲减RBP1后,细胞生长速率下降,大核的无丝分裂异常,细胞分裂末期产生了无大核的异常细胞,同时过表达RBP1导致了多小核的产生.结果表明,Rbp1p影响四膜虫细胞核的分裂进程,它的正常表达对细胞增殖过程起到重要的调节作用.  相似文献   

10.
11.
以酿酒酵母基因组为模板通过PCR分别扩增胱硫醚β合成酶(cystathionine β-synthase,CBS)和胱硫醚β-裂解酶(cystathionine β-lyase,CBL)目的基因片段,经无缝克隆构建表达质粒并转化大肠杆菌菌株E.coli BL21(DE3)。经诱导表达和纯化后,重组蛋白的纯度均达到90%,回收率均达到80%,可溶表达量分别为26 mg/L和332 mg/L。经催化活性测定,CBS的单位酶活为15 U/mg,CBL的单位酶活为72 U/mg。在此基础上初步开发了循环酶法同型半胱氨酸(homocysteine,Hcy)检测试剂盒,实验结果证明该试剂盒的有效性和稳定性均符合体外诊断检测的要求,其检测性能与市售进口同类试剂盒基本一致。  相似文献   

12.
RanGTPase激活蛋白(RanGTPase activating protein,RanGAP)和Ran相互作用,提高了Ran GTPase水解GTP的效率. RanGAP参与细胞内核质运输、纺锤体组装、核膜重建和异染色质的组装.生物进化过程中,不同生物的RanGAP表现出结构和功能的多样性.本研究从嗜热四膜虫大核基因组中鉴定出1个保守的RanGTPase激活蛋白基因RanGAP(TTHERM_00766430).实时荧光定量PCR表明,RanGAP在四膜虫营养生长、饥饿和有性生殖过程中均有表达,且在有性生殖4~6 h表达水平最高.免疫荧光定位表明,在营养生长期、饥饿期及有性生殖的早期,RanGAP定位于细胞质中| 在有性生殖后期, RanGAP定位于凋亡的大核中.过表达RanGAP的细胞增殖速率下降,大核分裂和胞质缢缩异常, 产生无大核细胞.敲减RanGAP的细胞大核形态异常,细胞增殖速率下降,无丝分裂受到抑制,进而产生无大核细胞.RanGAP的过表达或敲除分别引起四膜虫RAN1,RanBP1和RCC1基因的表达下调或上调.结果表明,RanGAP通过Ran信号通路调控了嗜热四膜虫无性生殖过程中大核的无丝分裂,并可能参与了有性生殖过程中亲本大核的凋亡.  相似文献   

13.
Metallothioneins MTT1 and MTT2 from Tetrahymena thermophila have been characterized. The MTT1 contains mainly characteristic Cys-Cys-Cys and Cys-Cys clusters, but MTT2 contains mainly Cys-X-Cys cluster. Cd16-MTT1 mainly consists of α-helix and β-turns, in contrast, Cd11-MTT2 mainly consists of random coils. Reaction of Cd16-MTT1 and Cd11-MTT2 with nitric oxide leads to intramolecular disulfide bond formation, respectively. Binding stabilities of Cd2+, Hg2+ and Zn2+ to MTT1 are stronger than those to MTT2. Cu2+ can not replace Cd2+ from Cd16-MTT1 complex, but can replace Cd2+ from Cd11-MTT2 complex. The analysis of qRT-PCR revealed MTT2 mRNA levels were 31-fold higher than those of MTT1 under basal conditions. These results further suggest MTT1 possibly play a role in the detoxification of heavy metal ions, and MTT2 may be involved in the homeostasis of copper ions.  相似文献   

14.
Live Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena's cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the mono-unsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: beta-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent-solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroyl-phosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b(5). NADH or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b(5) in these reactions.  相似文献   

15.
环状RNA(circular RNA,circRNA)是一类闭合环状的内源RNA分子,广泛存在于不同物种及多种人体细胞中,具有丰富性、稳定性和组织特异性等特点。人体细胞中的circRNA主要可分为外显子circRNA、环状内含子RNA和外显子-内含子circRNA等。与正常组织相比,circRNA在多种肿瘤组织中异常表达,并具有作为微小RNA(microRNA,miRNA)海绵调控miRNA、结合蛋白质、参与翻译等功能。虽然circRNA在肿瘤中异常表达的具体机制尚不明确,但其在食管鳞状细胞癌、胃癌、结直肠癌、肝细胞癌、神经胶质瘤等多种肿瘤发生、发展的分子通路中具有重要作用,并有望成为全新的肿瘤标志物和治疗靶点。circRNA领域的发展日新月异,本文根据最新研究报道,就circRNA的基本特征、异常表达机制、调控肿瘤的机制及其在多种肿瘤中发挥的作用作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号